76 research outputs found

    Optimality conditions and constraint qualifications for cardinality constrained optimization problems

    Full text link
    The cardinality constrained optimization problem (CCOP) is an optimization problem where the maximum number of nonzero components of any feasible point is bounded. In this paper, we consider CCOP as a mathematical program with disjunctive subspaces constraints (MPDSC). Since a subspace is a special case of a convex polyhedral set, MPDSC is a special case of the mathematical program with disjunctive constraints (MPDC). Using the special structure of subspaces, we are able to obtain more precise formulas for the tangent and (directional) normal cones for the disjunctive set of subspaces. We then obtain first and second order optimality conditions by using the corresponding results from MPDC. Thanks to the special structure of the subspace, we are able to obtain some results for MPDSC that do not hold in general for MPDC. In particular we show that the relaxed constant positive linear dependence (RCPLD) is a sufficient condition for the metric subregularity/error bound property for MPDSC which is not true for MPDC in general. Finally we show that under all constraint qualifications presented in this paper, certain exact penalization holds for CCOP

    The Radius of Metric Subregularity

    Get PDF
    There is a basic paradigm, called here the radius of well-posedness, which quantifies the "distance" from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.Comment: 20 page

    Error Bounds and Holder Metric Subregularity

    Get PDF
    The Holder setting of the metric subregularity property of set-valued mappings between general metric or Banach/Asplund spaces is investigated in the framework of the theory of error bounds for extended real-valued functions of two variables. A classification scheme for the general Holder metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal and subdifferential slopes.Comment: 32 pages. arXiv admin note: substantial text overlap with arXiv:1405.113
    corecore