477 research outputs found

    Soundness of Symbolic Equivalence for Modular Exponentiation

    Get PDF
    In this paper, we study the Dynamic Decisional Diffie-Hellman (3DH) problem, a powerful generalization of the Decisional Diffie-Hellman (DDH) problem. Our main result is that DDH implies 3DH. This result leads to significantly simpler proofs for protocols by relying directly on the more general problem. Our second contribution is a computationally sound symbolic technique for reasoning about protocols that use symmetric encryption and modular exponentiation. We show how to apply our results in the case of the Burmester & Desmedt protocol

    Efficient algorithms for pairing-based cryptosystems

    Get PDF
    We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in larger characteristics.We also propose faster algorithms for scalar multiplication in characteristic 3 and square root extraction over Fpm, the latter technique being also useful in contexts other than that of pairing-based cryptography

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Group theory in cryptography

    Full text link
    This paper is a guide for the pure mathematician who would like to know more about cryptography based on group theory. The paper gives a brief overview of the subject, and provides pointers to good textbooks, key research papers and recent survey papers in the area.Comment: 25 pages References updated, and a few extra references added. Minor typographical changes. To appear in Proceedings of Groups St Andrews 2009 in Bath, U

    An Internet-Wide Analysis of Diffie-Hellman Key Exchange and X.509 Certificates in TLS

    Get PDF
    Transport Layer Security (TLS) is a mature cryptographic protocol, but has flexibility during implementation which can introduce exploitable flaws. New vulnerabilities are routinely discovered that affect the security of TLS implementations. We discovered that discrete logarithm implementations have poor parameter validation, and we mathematically constructed a deniable backdoor to exploit this flaw in the finite field Diffie-Hellman key exchange. We described attack vectors an attacker could use to position this backdoor, and outlined a man-in-the-middle attack that exploits the backdoor to force Diffie-Hellman use during the TLS connection. We conducted an Internet-wide survey of ephemeral finite field Diffie-Hellman (DHE) across TLS and STARTTLS, finding hundreds of potentially backdoored DHE parameters and partially recovering the private DHE key in some cases. Disclosures were made to companies using these parameters, resulting in a public security advisory and discussions with the CTO of a billion-dollar company. We conducted a second Internet-wide survey investigating X.509 certificate name mismatch errors, finding approximately 70 million websites invalidated by these errors and additionally discovering over 1000 websites made inaccessible due to a combination of forced HTTPS and mismatch errors. We determined that name mismatch errors occur largely due to certificate mismanagement by web hosting and content delivery network companies. Further research into TLS implementations is necessary to encourage the use of more secure parameters
    • 

    corecore