324 research outputs found

    Design of a rescue robot for search and mapping operation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2006Includes bibliographical references (leaves: 65-66)Text in English; Abstract: Turkish and Englishx, 76 leavesThe aim of this thesis is to design a mobile robot for rescue operations after an earthquake. The robot is designed to locate injured victims and life triangle in debris, to create a map of the disaster area and to collect the necessary information needed by digging and support robots in order to the database center. This robot enables us to rescue the victim in the shortest time with minimum injury. This will let us risking the lives of the rescue teams much less as well as rescuing much more victim alive.Robot is designed with the longitudinal body design. Shock absorber system gives the damper effect against falls as well as adding advanced equilibrium properties while passing through a rough land. Driving mechanism is a tracked steering system.Front and back arm system is developed to provide high mobility while overtaking the obstacles.Secondly hovercraft type robot, which works with the cushion pressure principle, is designed as a rescue robot. It is thought that if the adequate height is supplied, the robot could manage to overcome obstacles.As a third design, ball robot, which could easily move uphill and has a capability to overrun obstacles, is studied.Jumping mechanism will be working by magnetic piston.In addition robot is equipped with the sensors so that it has capable of the navigation. In order to achieve feasible sensor systems, all electronic components are evaluated and the most effective sensors are chosen

    Review Paper on Search and Rescue Robot for Victims of Earthquake and Natural Calamities

    Get PDF
    A rescue robot is a robot that has been designed for the purpose of aiding in most rescue workforces. In most of common circumstances that skill rescue robots are mining fortunes, urban ruins, imprisoned situations, and blasts. Rescue robots were used in the search for victims and survivors after the September 11 occurrences in New York city. The reimbursement of rescue robots to these operations include reduced personnel rations, reduced fatigue, and access to otherwise unapproachable areas.The Robotic search and rescue is valuable since robots may be deployed in dangerous environments without putting human responders at peril conditions. This project is a prototypical which is extensively used for military applications.PIR sensor is used to detect human. A Passive Infra Red sensor (PIR sensor) is an electronic device which measures infrared light radiating from objects in its field of interpretation. Seeming motion is detected when an infrared source with one temperature, such as a human, passes in noticeable of an infrared source with another temperature, it detects. It acts as a motion finder. This robot uses RF technology controlled by RF remote controller. This can be enthused forward and reverse direction using geared motors of 60RPM. Also this robot can gross high-pitched turns towards left and right directions. This project uses ARM7 MCU as its controller. Also a wireless camera with voice is rim to the kit. We are exhausting the GPS module for exact location tracker of robot when human body is detected. DOI: 10.17762/ijritcc2321-8169.16045

    Sound source localization through shape reconfiguration in a snake robot

    Get PDF
    This paper describes a snake robot system that uses sound source localization. We show in this paper as to how we can localize a sound source in 3D and solve the classic forward backward problem in sound source localization using minimum number of audio sensors by using the multiple degrees of freedom of the snake robot. We describe the hardware and software architecture of the robot and show the results of several sound tracking experiments we did with our snake robot. We also present biologically inspired sound tracking behavior in different postures of a biological snake robot as "Digital Snake Charming"

    Design study of an earthquake rescue robot

    Get PDF
    This thesis describes the design of a brush robot for earthquake rescue and for traversing pipes with varied cross sectional shape. Earthquake rescue is a very dangerous, difficult and challenging task, in which emergency services rescue people who are trapped in man-made structures, such as collapsed buildings after an earthquake. The building collapse may have been caused by natural or man-made events. This technology is also applicable to tunnel collapse and land slips. The focus of this work is finding the location of victims and provision of primary life support and communications. To illustrate the concept of the robot, the thesis first discusses the current development of rescue robots and pipe robots. Then the thesis focuses on the description of a brush based pipe robot, developed by the University of Durham, which would be used as the basis of an earthquake rescue robot. The concept of the robot was illustrated and compared with other current rescue robots and pipe robots. After outlining the advantages of this robot concept, a robot body shape change theory was proposed and theoretical simulations were used to verily the practicality of the robot shape change theory. The thesis also illustrates the design of the working principle and design of a robot sensor, which was subsequently used in the robot shape change experiments. The robot body shape change experiments and the experimental results are described and discussed. The experimental results illustrate the robot concept and support the robot body shape change theory. Chapter 6 focuses on the brush unit traction investigation, bristle theory and mathematical model. Furthermore, the bristle theory and mathematical model were used to explain the variation of traction force in the traction experiments

    Modified serpentine motion of the snake robot

    Get PDF
    The frequent occurrence of earthquake in New Zealand drives the research on snake robot for search and rescue operation because of its elongated body shape and locomotion mimicry of the biological snake. Both features are in favour of moving the snake robot through the earthquake disaster area. To facilitate the robot control and information gathering, it is usually required to install a camera on the snake robot head so that the video images of the disaster area can be send back to the human operator. This thesis presents the simulation of a snake robot performing serpentine motion. A camera is attached on the snake robot head to obtain the video image along the line of sight. A remote controller is incorporated to control the advancement based on the video images. This simulation reveals that the video images from the camera oscillate seriously because the camera on the snake robot head follows serpenoid curve during the locomotion. As a result, both robot control and information gathering are affected. A solution is proposed to stabilize the snake robot head and its camera by introducing a correction at the joint between the robot head and its body. This correction aligns the camera sight direction with the moving direction of the snake robot to yield satisfactory video images. Finally, an actual snake robot is implemented with a wireless camera installed on the head to show the effect of correction. Experiments are conducted to control the advancement of snake robot remotely just based on the video images obtained from the camera. This greatly improves the performance of the snake robot

    Scale estimation by a robot in an urban search and rescue environment

    Get PDF
    Urban Search and Rescue (USAR) involves having to enter and explore partially collapsed buildings in search for victims trapped by the collapse. There are many hazards in doing this, because of the possibility of additional collapses, explosions, fires, or flooding of the area being searched. The use of robots for USAR would increase the safety of the operation for the humans involved, and make the operation faster, because the robots could penetrate areas inaccessible to human beings. Teleoperated robots have been deployed in USAR situations to explore confined spaces in the collapsed buildings and send back images of the interior to rescuers. These deployments have resulted in the identification of several problems found during the operation of these robots. This thesis addresses a problem that has been encountered repeatedly in these robots: the determination of the scale of unrecognizable objects in the camera views from the robot. A procedure that would allow the extraction of size using a laser pointer mounted on the robot's camera is described, and an experimental setup and results that verify this procedure have been shown. Finally, ways to extend the procedure have been explore

    A Tread/Limb/Serpentine Hybrid Robot: Toward Hypermobility in Deconstructed Environments

    Get PDF
    According to the Red Cross, an average of over 600 disasters and 100,000 associated deaths occur annually throughout the world. This frequency of disasters strains an already overburdened disaster response effort. In the first 48 hours of a rescue operation, it is estimated that a responder will get less than three hours of continuous sleep as they need to work at full force to set up the operation and begin work in the field. This leads to sleep deprivation during the most critical time for search and rescue of victims. Therefore, robots are greatly needed as a force multiplier in USAR response to reduce some of the burden and workload placed on the human rescue workers to make for a more efficient and effective response

    Design, Analysis, and Fabrication of a Snake-Inspired Robot with a Rectilinear Gait

    Get PDF
    Snake-inspired robots display promise in areas such as search, rescue and reconnaissance due to their ability to locomote through tight spaces. However, several specific issues regarding the design and analysis must be addressed in order to better design them. This thesis develops kinematic and dynamic models for a class of snake-inspired gait known as a rectilinear gait, where mechanism topology changes over the course of the gait. A model using an Eulerian framework and Coulomb friction yields torque expressions for the joints of the robot. B-spline curves are then used to generate a parametric optimization formulation for joint trajectory generation. Exact gradient computation of the torque functions is presented. A parametric model is used to describe the performance effects of changing system parameters such as mass, length, and motor speed. Finally, a snake-inspired robot is designed and fabricated in order to demonstrate both the vertical rectilinear gait and a modular, molded design aimed at reducing the cost of fabrication

    Design, Analysis, and Fabrication of a Snake-Inspired Robot with a Rectilinear Gait

    Get PDF
    Snake-inspired robots display promise in areas such as search, rescue and reconnaissance due to their ability to locomote through tight spaces. However, several specific issues regarding the design and analysis must be addressed in order to better design them. This thesis develops kinematic and dynamic models for a class of snake-inspired gait known as a rectilinear gait, where mechanism topology changes over the course of the gait. A model using an Eulerian framework and Coulomb friction yields torque expressions for the joints of the robot. B-spline curves are then used to generate a parametric optimization formulation for joint trajectory generation. Exact gradient computation of the torque functions is presented. A parametric model is used to describe the performance effects of changing system parameters such as mass, length, and motor speed. Finally, a snake-inspired robot is designed and fabricated in order to demonstrate both the vertical rectilinear gait and a modular, molded design aimed at reducing the cost of fabrication

    Robots Hiper-Redundantes: Clasificación, Estado del Arte y Problemática

    Get PDF
    Los robots hiper-redundantes son aquellos que tienen un número muy elevado de grados de libertad. En su uso cotidiano, la redundancia es referida para indicar una repetición o un uso excesivo de un concepto. En el campo de la robótica, la redundancia puede ofrecer numerosos beneficios frente a los robots convencionales. Los robots hiper-redundantes poseen una mayor habilidad para sortear obstáculos, son tolerantes a fallos en algunas de sus articulaciones y también pueden ofrecer ventajas cinemáticas. En este artículo se presentan los conceptos generales para entender este tipo de robots, así como una clasificación de los mismos, su potencial, su problemática y su evolución a lo largo de la historia
    corecore