134 research outputs found

    On Determinisation of Good-for-Games Automata

    Get PDF
    International audienceIn this work we study Good-For-Games (GFG) automata over ω-words: non-deterministic automata where the non-determinism can be resolved by a strategy depending only on the prefix of the ω-word read so far. These automata retain some advantages of determinism: they can be composed with games and trees in a sound way, and inclusion LpAq Ě LpBq can be reduced to a parity game over A ˆ B if A is GFG. Therefore, they could be used to some advantage in verification, for instance as solutions to the synthesis problem. The main results of this work answer the question whether parity GFG automata actually present an improvement in terms of state-complexity (the number of states) compared to the deterministic ones. We show that a frontier lies between the Büchi condition, where GFG automata can be determinised with only quadratic blow-up in state-complexity; and the co-Büchi condition, where GFG automata can be exponentially smaller than any deterministic automaton for the same language. We also study the complexity of deciding whether a given automaton is GFG

    Width of Non-deterministic Automata

    Get PDF
    International audienceWe introduce a measure called width, quantifying the amount of nondeterminism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata in this context. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard. 1 Introduction Determinisation of non-deterministic automata (NFAs) is one of the cornerstone problems of automata theory, with countless applications in verification. There is a very active field of research for optimizing or approximating determinisation, or circumventing it in contexts like inclusion of NFA or Church Synthesis. Indeed, determinisation is a costly operation, as the state space blow-up is in O(2 n) on finite words, O(3 n) for coBüchi automata [16], and 2 O(n log(n)) for Büchi automata [17]. If A and B are NFAs, the classical way of checking the inclusion L(A) ⊆ L(B) is to determinise B, complement it, and test emptiness of L(A) ∩ L(B). To circumvent a full determinisation, the recent algorithm from [3] proved to be very efficient, as it is likely to explore only a part of the powerset construction. Other approaches use simulation games to approximate inclusion at a cheaper cost, see for instance [8]. Another approach consists in replacing determinism by a weaker constraint that suffices in some particular context. In this spirit, Good-for-Games automata (GFG for short) were introduced in [9], as a way to solve the Church synthesis problem. This problem asks, given a specification L, typically given by an LTL formula, over an alphabet of inputs and outputs, whether there is a reactive system (transducer) whose behaviour is included in L. The classical solution computes a deterministic automaton for L, and solves a game defined on this automaton. It turns out that replacing determinism by the weaker constraint of being GFG is sufficient in this context. Intuitively, GFG automata are non-deterministic * This work was supported by the grant PALSE Impulsion

    Computing the Width of Non-deterministic Automata

    Get PDF
    International audienceWe introduce a measure called width, quantifying the amount of nondetermin-ism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in the last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is EXPTIME-complete. This implies EXPTIME-completeness for multipebble simulation games on NFAs

    Determinising Parity Automata

    Full text link
    Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a small constant. Moreover, the lower bound refers to the more liberal Streett acceptance. We thus show that determinisation to Streett would not lead to better bounds than determinisation to parity. As a side-result, this optimality extends to the determinisation of B\"uchi automata

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    The Bridge Between Regular Cost Functions and Omega-Regular Languages

    Get PDF
    In this paper, we exhibit a one-to-one correspondence between omega-regular languages and a subclass of regular cost functions over finite words, called omega-regular like cost functions. This bridge between the two models allows one to readily import classical results such as the last appearance record or the McNaughton-Safra constructions to the realm of regular cost functions. In combination with game theoretic techniques, this also yields a simple description of an optimal procedure of history-determinisation for cost automata, a central result in the theory of regular cost functions

    On the Succinctness of Alternating Parity Good-For-Games Automata

    Get PDF
    We study alternating parity good-for-games (GFG) automata, i.e., alternating parity automata where both conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of the suffix of the input word still to be read. We show that they can be exponentially more succinct than both their nondeterministic and universal counterparts. Furthermore, we present a single exponential determinisation procedure and an Exptime upper bound to the problem of recognising whether an alternating automaton is GFG. We also study the complexity of deciding "half-GFGness", a property specific to alternating automata that only requires nondeterministic choices to be resolved in an online manner. We show that this problem is PSpace-hard already for alternating automata on finite words

    Optimal transformations of Muller conditions

    Full text link
    In this paper, we are interested in automata over infinite words and infinite duration games, that we view as general transition systems. We study transformations of systems using a Muller condition into ones using a parity condition, extending Zielonka's construction. We introduce the alternating cycle decomposition transformation, and we prove a strong optimality result: for any given deterministic Muller automaton, the obtained parity automaton is minimal both in size and number of priorities among those automata admitting a morphism into the original Muller automaton. We give two applications. The first is an improvement in the process of determinisation of B\"uchi automata into parity automata by Piterman and Schewe. The second is to present characterisations on the possibility of relabelling automata with different acceptance conditions

    Optimal Transformations of Games and Automata Using Muller Conditions

    Get PDF
    corecore