4,898 research outputs found

    What Learned Representations and Influence Functions Can Tell Us About Adversarial Examples

    Full text link
    Adversarial examples, deliberately crafted using small perturbations to fool deep neural networks, were first studied in image processing and more recently in NLP. While approaches to detecting adversarial examples in NLP have largely relied on search over input perturbations, image processing has seen a range of techniques that aim to characterise adversarial subspaces over the learned representations. In this paper, we adapt two such approaches to NLP, one based on nearest neighbors and influence functions and one on Mahalanobis distances. The former in particular produces a state-of-the-art detector when compared against several strong baselines; moreover, the novel use of influence functions provides insight into how the nature of adversarial example subspaces in NLP relate to those in image processing, and also how they differ depending on the kind of NLP task.Comment: 20 pages, Accepted in IJCNLP_AACL 202

    The Odds are Odd: A Statistical Test for Detecting Adversarial Examples

    Full text link
    We investigate conditions under which test statistics exist that can reliably detect examples, which have been adversarially manipulated in a white-box attack. These statistics can be easily computed and calibrated by randomly corrupting inputs. They exploit certain anomalies that adversarial attacks introduce, in particular if they follow the paradigm of choosing perturbations optimally under p-norm constraints. Access to the log-odds is the only requirement to defend models. We justify our approach empirically, but also provide conditions under which detectability via the suggested test statistics is guaranteed to be effective. In our experiments, we show that it is even possible to correct test time predictions for adversarial attacks with high accuracy
    • …
    corecore