2,723 research outputs found

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Fuse-N: Framework for unified simulation environment for network-on-chip

    Full text link
    Steady advancements in semiconductor technology over the past few decades have marked incipience of Multi-Processor System-on-Chip (MPSoCs). Owing to the inability of traditional bus-based communication system to scale well with improving microchip technologies, researchers have proposed Network-on-Chip (NoC) as the on-chip communication model. Current uni-processor centric modeling methodology does not address the new design challenges introduced by MPSoCs, thus calling for efficient simulation frameworks capable of capturing the interplay between the application, the architecture, and the network. Addressing these new challenges requires a framework that assists the designer at different abstraction levels of system design; This thesis concentrates on developing a framework for unified simulation environment for NoCs (fuse-N) which simplifies the design space exploration for NoCs by offering a comprehensive simulation support. The framework synthesizes the network infrastructure and the communication model and optimizes application mapping for design constraints. The proposed framework is a hardware-software co-design implementation using SystemC 2.1 and C++. Simulation results show the architectural, network and resource allocation behavior and highlight the quantitative relationships between various design choices; Also, a novel off-line non-preemptive static Traffic Aware Scheduling (TAS) policy is proposed for hard NoC platforms. The proposed scheduling policy maps the application onto the NoC architecture keeping track of the network traffic, which is generated with every resource and communication path allocation. TAS has been evaluated for various design metrics such as application completion time, resource utilization and task throughput. Simulation results show significant improvements over traditional approaches

    Network-on-Chip Topologies: Potentials, Technical Challenges, Recent Advances and Research Direction

    Get PDF
    Integration technology advancement has impacted the System-on-Chip (SoC) in which heterogeneous cores are supported on a single chip. Based on the huge amount of supported heterogeneous cores, efficient communication between the associated processors has to be considered at all levels of the system design to ensure global interconnection. This can be achieved through a design-friendly, flexible, scalable, and high-performance interconnection architecture. It is noteworthy that the interconnections between multiple cores on a chip present a considerable influence on the performance and communication of the chip design regarding the throughput, end-to-end delay, and packets loss ratio. Although hierarchical architectures have addressed the majority of the associated challenges of the traditional interconnection techniques, the main limiting factor is scalability. Network-on-Chip (NoC) has been presented as a scalable and well-structured alternative solution that is capable of addressing communication issues in the on-chip systems. In this context, several NoC topologies have been presented to support various routing techniques and attend to different chip architectural requirements. This book chapter reviews some of the existing NoC topologies and their associated characteristics. Also, application mapping algorithms and some key challenges of NoC are considered

    Area Optimization for Networks-on-Chip Architectures using Deep Network Partitioning

    Get PDF
    This paper presents an area optimization for Network-on-Chip (NoC) architecture using deep Network Par- titioning technique. Among the hardest problems in NoC design is customizing the topological structure and application mapping on on-chip network in order to cater for application demand at minimal cost. The area cost of NoC is cut down by utilizing multi- level network partitioning where it partitions large networks into smaller segments. The enhancement in area cost is obtained by reducing both router area and the number of global links. In terms of performance, the multi-level network partitioning offers a better solution by assigning computational cores with heavy inter-core communications into the same segment. Therefore, the average inter-node distances would be minimized. This directly results in better performance due to its shortest path. For verification, the proposed technique has been tested on various System-on-Chip (SoC) applications case studies. The proposed technique results in the reduction of more than 7% router area, 19% global links, and 12% average inter-node distance

    SUNMAP: A Tool for Automatic Topology Selection and Generation for NoCs

    Get PDF
    Increasing communication demands of processor and memory cores in Systems on Chips (SoCs) necessitate the use of Networks on Chip (NoC) to interconnect the cores. An important phase in the design of NoCs is the mapping of cores onto the most suitable topology for a given application. In this paper, we present SUNMAP a tool for automatically selecting the best topology for a given application and producing a mapping of cores onto that topology. SUNMAP explores various design objective such as minimizing average communication delay, area, power dissipation subject to bandwidth and area constraints. The tool supports different routing functions (dimension ordered, minimum-path, traffic splitting) and uses floorplanning information early in the topology selection process to provide feasible mappings. The network components of the chosen NoC are automatically generated using cycle-accurate SystemC soft macros from xpipes architecture. SUNMAP automates NoC selection and generation, bridging an important design gap in building NoCs. Several experimental case studies are presented in the paper, which show the rich design space exploration capabilities of SUNMAP

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    PhoNoCMap: An application mapping tool for photonic networks-on-chip

    Get PDF
    While providing a promising solution for high-performance on-chip communication, photonic networks-on-chip suffer from insertion loss and crosstalk noise, which may severely constrain their scalability. In this paper, we introduce a methodology and a related tool, PhoNoCMap, for the design space exploration of optical NoCs mapping solutions, which automatically assigns application tasks to the nodes of a generic photonic NoC architecture such that the worst-case either insertion loss or crosstalk noise are minimized. The experimental results show significant benefits in terms of insertion loss and crosstalk noise, allowing improved network scalability

    Physical parameter-aware Networks-on-Chip design

    Get PDF
    PhD ThesisNetworks-on-Chip (NoCs) have been proposed as a scalable, reliable and power-efficient communication fabric for chip multiprocessors (CMPs) and multiprocessor systems-on-chip (MPSoCs). NoCs determine both the performance and the reliability of such systems, with a significant power demand that is expected to increase due to developments in both technology and architecture. In terms of architecture, an important trend in many-core systems architecture is to increase the number of cores on a chip while reducing their individual complexity. This trend increases communication power relative to computation power. Moreover, technology-wise, power-hungry wires are dominating logic as power consumers as technology scales down. For these reasons, the design of future very large scale integration (VLSI) systems is moving from being computation-centric to communication-centric. On the other hand, chip’s physical parameters integrity, especially power and thermal integrity, is crucial for reliable VLSI systems. However, guaranteeing this integrity is becoming increasingly difficult with the higher scale of integration due to increased power density and operating frequencies that result in continuously increasing temperature and voltage drops in the chip. This is a challenge that may prevent further shrinking of devices. Thus, tackling the challenge of power and thermal integrity of future many-core systems at only one level of abstraction, the chip and package design for example, is no longer sufficient to ensure the integrity of physical parameters. New designtime and run-time strategies may need to work together at different levels of abstraction, such as package, application, network, to provide the required physical parameter integrity for these large systems. This necessitates strategies that work at the level of the on-chip network with its rising power budget. This thesis proposes models, techniques and architectures to improve power and thermal integrity of Network-on-Chip (NoC)-based many-core systems. The thesis is composed of two major parts: i) minimization and modelling of power supply variations to improve power integrity; and ii) dynamic thermal adaptation to improve thermal integrity. This thesis makes four major contributions. The first is a computational model of on-chip power supply variations in NoCs. The proposed model embeds a power delivery model, an NoC activity simulator and a power model. The model is verified with SPICE simulation and employed to analyse power supply variations in synthetic and real NoC workloads. Novel observations regarding power supply noise correlation with different traffic patterns and routing algorithms are found. The second is a new application mapping strategy aiming vii to minimize power supply noise in NoCs. This is achieved by defining a new metric, switching activity density, and employing a force-based objective function that results in minimizing switching density. Significant reductions in power supply noise (PSN) are achieved with a low energy penalty. This reduction in PSN also results in a better link timing accuracy. The third contribution is a new dynamic thermal-adaptive routing strategy to effectively diffuse heat from the NoC-based threedimensional (3D) CMPs, using a dynamic programming (DP)-based distributed control architecture. Moreover, a new approach for efficient extension of two-dimensional (2D) partially-adaptive routing algorithms to 3D is presented. This approach improves three-dimensional networkon- chip (3D NoC) routing adaptivity while ensuring deadlock-freeness. Finally, the proposed thermal-adaptive routing is implemented in field-programmable gate array (FPGA), and implementation challenges, for both thermal sensing and the dynamic control architecture are addressed. The proposed routing implementation is evaluated in terms of both functionality and performance. The methodologies and architectures proposed in this thesis open a new direction for improving the power and thermal integrity of future NoC-based 2D and 3D many-core architectures
    • …
    corecore