6,852 research outputs found

    Computationally Data-Independent Memory Hard Functions

    Get PDF
    Memory hard functions (MHFs) are an important cryptographic primitive that are used to design egalitarian proofs of work and in the construction of moderately expensive key-derivation functions resistant to brute-force attacks. Broadly speaking, MHFs can be divided into two categories: data-dependent memory hard functions (dMHFs) and data-independent memory hard functions (iMHFs). iMHFs are resistant to certain side-channel attacks as the memory access pattern induced by the honest evaluation algorithm is independent of the potentially sensitive input e.g., password. While dMHFs are potentially vulnerable to side-channel attacks (the induced memory access pattern might leak useful information to a brute-force attacker), they can achieve higher cumulative memory complexity (CMC) in comparison than an iMHF. In particular, any iMHF that can be evaluated in N steps on a sequential machine has CMC at most ?((N^2 log log N)/log N). By contrast, the dMHF scrypt achieves maximal CMC ?(N^2) - though the CMC of scrypt would be reduced to just ?(N) after a side-channel attack. In this paper, we introduce the notion of computationally data-independent memory hard functions (ciMHFs). Intuitively, we require that memory access pattern induced by the (randomized) ciMHF evaluation algorithm appears to be independent from the standpoint of a computationally bounded eavesdropping attacker - even if the attacker selects the initial input. We then ask whether it is possible to circumvent known upper bound for iMHFs and build a ciMHF with CMC ?(N^2). Surprisingly, we answer the question in the affirmative when the ciMHF evaluation algorithm is executed on a two-tiered memory architecture (RAM/Cache). We introduce the notion of a k-restricted dynamic graph to quantify the continuum between unrestricted dMHFs (k=n) and iMHFs (k=1). For any ? > 0 we show how to construct a k-restricted dynamic graph with k=?(N^(1-?)) that provably achieves maximum cumulative pebbling cost ?(N^2). We can use k-restricted dynamic graphs to build a ciMHF provided that cache is large enough to hold k hash outputs and the dynamic graph satisfies a certain property that we call "amenable to shuffling". In particular, we prove that the induced memory access pattern is indistinguishable to a polynomial time attacker who can monitor the locations of read/write requests to RAM, but not cache. We also show that when k=o(N^(1/log log N))then any k-restricted graph with constant indegree has cumulative pebbling cost o(N^2). Our results almost completely characterize the spectrum of k-restricted dynamic graphs

    The use and efficiency of some gutter inlet grates

    Get PDF
    University of Illinois bulletin, v. 56, no. 78Bibliography: p. 6

    Access Platforms for Offshore Wind Turbines Using Gratings

    Get PDF

    Loads on Wind Turbines Access Platforms with Gratings

    Get PDF

    The relevance of grated inlets within surface drainage systems in the field of urban flood resilience. A review of several experimental and numerical simulation approaches

    Get PDF
    Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with rele-vant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear

    The Results of Research to Determine the Parameters of Hardening Working Area of the Gin and Linter Grates

    Get PDF
    The article provides substantiation of the choice of the quenching parameters for the working zone of gin and linter grates and the quenching parameters. The results of bench and industrial tests of the grate with a hardened working zone are also given

    Flood risk assessment in an underground railway system under the impact of climate change: a case study of the Barcelona metro

    Get PDF
    Flooding events can produce significant disturbances in underground transport systems within urban areas and lead to economic and technical consequences, which can be worsened by variations in the occurrence of climate extremes. Within the framework of the European project RESCCUE (RESilience to cope with Climate Change in Urban arEas—a multi-sectorial approach focusing on water), climate projections for the city of Barcelona manifest meaningful increases in maximum rainfall intensities for the 2100 horizon. A better comprehension of these impacts and their conditions is consequently needed. A hydrodynamic modelling process was carried out on Barcelona Metro Line 3, as it was identified as vulnerable to pluvial flooding events. The Metro line and all its components are simulated in the urban drainage models as a system of computational link and nodes reproducing the main physical characteristics like slopes and cross-sections when embedded in the current 1D/2D hydrodynamic model of Barcelona used in the project RESCCUE. This study presents a risk analysis focused on ensuring transport service continuity in flood events. The results reveal that two of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in current rainfall conditions, and 11 of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in future rainfall conditions for a 20-year return period event, which affects Metro service in terms of increased risk. This research gives insights for stakeholders and policymakers to enhance urban flood risk management, as a reasonable approach to tackle this issue for Metro systems worldwide. This study provides a baseline for assessing potential flood outcomes in Metro systems and can be used to evaluate adaptation measures’ effectiveness.This research, under the RESCCUE Project, was funded by the European Commission Horizon2020 funding program. Grant Agreement No. 700174. The authors are grateful to BCASA (from Barcelona City Council) and Bristol City Council for their contributions and insights to implement the methodology and fit it into their new Drainage Master Plans. Thank you also to all partners of the Project RESCCUE for their work during the 4 years of the project, which made this work possible.Peer ReviewedPostprint (published version

    Effectiveness of a Rigid Grate for Excluding Pacific Halibut, Hippoglossus stenolepis, From Groundfish Trawl Catches

    Get PDF
    A rigid grate was installed in a groundfish trawl to test its effectiveness in excluding Pacific halibut, Hippoglossus stenolepis, from commercial flatfish catches in the Gulf of Alaska. The grate was located ahead of the trawl codend to direct halibut toward an escape opening while allowing target species to pass through toward the codend. In an experimental fishery, the escape rate of halibut was estimated at 94%, while 72% of the Dover sole, Microstomas pacificus, 67% of the rex sole, Glyptocephalus zachirus, and 79% of the flathead sole, Hippoglossoides elassodon, were retained
    • 

    corecore