1,394 research outputs found

    Refinement Types as Higher Order Dependency Pairs

    Get PDF
    Refinement types are a well-studied manner of performing in-depth analysis on functional programs. The dependency pair method is a very powerful method used to prove termination of rewrite systems; however its extension to higher order rewrite systems is still the object of active research. We observe that a variant of refinement types allow us to express a form of higher-order dependency pair criterion that only uses information at the type level, and we prove the correctness of this criterion

    Termination Proofs in the Dependency Pair Framework May Induce Multiple Recursive Derivational Complexity

    Get PDF
    We study the derivational complexity of rewrite systems whose termination is provable in the dependency pair framework using the processors for reduction pairs, dependency graphs, or the subterm criterion. We show that the derivational complexity of such systems is bounded by a multiple recursive function, provided the derivational complexity induced by the employed base techniques is at most multiple recursive. Moreover we show that this upper bound is tight.Comment: 22 pages, extended conference versio

    Guided Unfoldings for Finding Loops in Standard Term Rewriting

    Full text link
    In this paper, we reconsider the unfolding-based technique that we have introduced previously for detecting loops in standard term rewriting. We improve it by guiding the unfolding process, using distinguished positions in the rewrite rules. This results in a depth-first computation of the unfoldings, whereas the original technique was breadth-first. We have implemented this new approach in our tool NTI and compared it to the previous one on a bunch of rewrite systems. The results we get are promising (better times, more successful proofs).Comment: Pre-proceedings paper presented at the 28th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt am Main, Germany, 4-6 September 2018 (arXiv:1808.03326
    • …
    corecore