2,338 research outputs found

    Stable Memoryless Queuing under Contention

    Get PDF

    Routing and Security in Mobile Ad Hoc Networks

    Get PDF
    A Mobile Ad hoc Network (MANET) consists of a set of nodes which can form a network among themselves. MANETs have applications in areas such as military, disaster rescue operations, monitoring animal habitats, etc. where establishing fixed communication infrastructure is not feasible. Routing protocols designed for MANETs can be broadly classified as position-based (geographic), topology-based and hybrid. Geographic routing uses location information of nodes to route messages. Topology-based routing uses network state information for route discovery and maintenance. Hybrid routing protocols use features in both position-based and topology-based approaches. Position-based routing protocols route packets towards the destination using greedy forwarding (i.e., an intermediate node forwards packets to a neighbor that is closer to the destination than itself). If a node has no neighbor that is closer to the destination than itself, greedy forwarding fails. In this case, we say there is void. Different position-based routing protocols use different methods for dealing with voids. Topology-based routing protocols can be classified into on-demand (reactive) routing protocols and proactive routing protocols. Generally, on-demand routing protocols establish routes when needed by flooding route requests throughout the entire network, which is not a scalable approach. Reactive routing protocols try to maintain routes between every pair of nodes by periodically exchanging messages with each other which is not a scalable approach also. This thesis addresses some of these issues and makes the following contribution. First, we present a position-based routing protocol called Greedy Routing Protocol with Backtracking (GRB) which uses a simple backtracking technique to route around voids, unlike existing position-based routing protocols which construct planarized graph of the local network to route around voids. We compare the performance of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR) protocol and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as well as the Dynamic Source Routing (DSR) protocol. Performance evaluation shows that our protocol has less control overhead than those of DSR, AODV, and GPSR. Performance evaluation also shows that our protocol has a higher packet-delivery ratio, lower end-to-end delay, and less hop count, on average, compared to AODV, DSR and GPSR. We then present an on-demand routing protocol called ``Hybrid On-demand Greedy Routing Protocol with Backtracking for Mobile Ad-Hoc Networks which uses greedy approach for route discovery. This prevents flooding route requests, unlike the existing on-demand routing protocols. This approach also helps in finding routes that have lower hop counts than AODV and DSR. Our performance evaluation confirms that our protocol performs better than AODV and DSR, on average, with respect to hop count, packet-delivery ratio and control overhead. In MANETs, all nodes need to cooperate to establish routes. Establishing secure and valid routes in the presence of adversaries is a challenge in MANETs. Some of the well-known source routing protocols presented in the literature (e.g., Ariadne and endairA) which claim to establish secure routes are susceptible to hidden channel attacks. We address this issue and present a secure routing protocol called SAriadne, based on sanitizable signatures. We show that our protocol detects and prevents hidden channel attacks

    Optimal Schedules for Asynchronous Transmission of Discrete Packets

    Get PDF
    In this paper we study the distribution of dynamic data over a broadcast channel to a large number of passive clients. Clients obtain the information by accessing the channel and listening for the next available packet. This scenario, referred to as packet-based or discrete broadcast, has many practical applications such as the distribution of weather and traffic updates to wireless mobile devices, reconfiguration and reprogramming of wireless sensors and downloading dynamic task information in battlefield networks. The optimal broadcast protocols require a high degree of synchronization between the server and the wireless clients. However, in typical wireless settings such degree of synchronization is difficult to achieve due to the inaccuracy of internal clocks. Moreover, in some settings, such as military applications, synchronized transmission is not desirable due to jamming. The lack of synchronization leads to large delays and excessive power consumption. Accordingly, in this work we focus on the design of optimal broadcast schedules that are robust to clock inaccuracy. We present universal schedules for delivery of up-to-date information with minimum waiting time in asynchronous settings

    Optimal Universal Schedules for Discrete Broadcast

    Get PDF
    We study broadcast systems that distribute a series of data updates to a large number of passive clients. The updates are sent over a broadcast channel in the form of discrete packets. We assume that clients periodically access the channel to obtain the most recent update. Such scenarios arise in many practical applications, such as distribution of traffic information and market updates to mobile wireless devices
    corecore