85 research outputs found

    Cell replication and redundancy elimination during placement for cycle time optimization

    Get PDF
    This paper presents a new timing driven approach for cell replication tailored to the practical needs of standard cell layout design. Cell replication methods have been studied extensively in the context of generic partitioning problems. However, until now it has remained unclear what practical benefit can be obtained from this concept in a realistic environment for timing driven layout synthesis. Therefore, this paper presents a timing driven cell replication procedure, demonstrates its incorporation into a standard cell placement and routing tool and examines its benefit on the final circuit performance in comparison with conventional gate or transistor sizing techniques. Furthermore, we demonstrate that cell replication can deteriorate the stuck-at fault testability of circuits and show that stuck-at redundancy elimination must be integrated into the placement procedure. Experimental results demonstrate the usefulness of the proposed methodology and suggest that cell replication should be an integral part of the physical design flow complementing traditional gate sizing techniques

    On testing VLSI chips for the big Viterbi decoder

    Get PDF
    A general technique that can be used in testing very large scale integrated (VLSI) chips for the Big Viterbi Decoder (BVD) system is described. The test technique is divided into functional testing and fault-coverage testing. The purpose of functional testing is to verify that the design works functionally. Functional test vectors are converted from outputs of software simulations which simulate the BVD functionally. Fault-coverage testing is used to detect and, in some cases, to locate faulty components caused by bad fabrication. This type of testing is useful in screening out bad chips. Finally, design for testability, which is included in the BVD VLSI chip design, is described in considerable detail. Both the observability and controllability of a VLSI chip are greatly enhanced by including the design for the testability feature

    LOT: Logic Optimization with Testability - new transformations for logic synthesis

    Get PDF
    A new approach to optimize multilevel logic circuits is introduced. Given a multilevel circuit, the synthesis method optimizes its area while simultaneously enhancing its random pattern testability. The method is based on structural transformations at the gate level. New transformations involving EX-OR gates as well as Reed–Muller expansions have been introduced in the synthesis of multilevel circuits. This method is augmented with transformations that specifically enhance random-pattern testability while reducing the area. Testability enhancement is an integral part of our synthesis methodology. Experimental results show that the proposed methodology not only can achieve lower area than other similar tools, but that it achieves better testability compared to available testability enhancement tools such as tstfx. Specifically for ISCAS-85 benchmark circuits, it was observed that EX-OR gate-based transformations successfully contributed toward generating smaller circuits compared to other state-of-the-art logic optimization tools

    Observation mechanisms for in-field software-based self-test

    Get PDF
    When electronic systems are used in safety critical applications, as in the space, avionic, automotive or biomedical areas, it is required to maintain a very low probability of failures due to faults of any kind. Standards and regulations play a significant role, forcing companies to devise and adopt solutions able to achieve predefined targets in terms of dependability. Different techniques can be used to reduce fault occurrence or to minimize the probability that those faults produce critical failures (e.g., by introducing redundancy). Unfortunately, most of these techniques have a severe impact on the cost of the resulting product and, in some cases, the probability of failures is too large anyway. Hence, a solution commonly used in several scenarios lies on periodically performing a test able to detect the occurrence of any fault before it produces a failure (in-field test). This solution is normally based on forcing the processor inside the Device Under Test to execute a properly written test program, which is able to activate possible faults and to make their effects visible in some observable locations. This approach is also called Software-Based Self-Test, or SBST. If compared with testing in an end of manufacturing scenario, in-field testing has strong limitations in terms of access to the system inputs and outputs because Design for Testability structures and testing equipment are usually not available. As a consequence there are reduced possibilities to activate the faults and to observe their effects. This reduced observability particularly affects the ability to detect performance faults, i.e. faults that modify the timing but not the final value of computations. This kind of faults are hard to detect by only observing the final content of predefined memory locations, that is the usual test result observation method used in-field. Initially, the present work was focused on fault tolerance techniques against transient faults induced by ionizing radiation, the so called Single Event Upsets (SEUs). The main contribution of this early stage of the thesis lies in the experimental validation of the feasibility of achieving a safe system by using an architecture that combines task-level redundancy with already available IP cores, thus minimizing the development time. Task execution is replicated and Memory Protection is used to guarantee that any SEU may affect one and only one of the replicas. A proof of concept implementation was developed and validated using fault injection. Results outline the effectiveness of the architecture, and the overhead analysis shows that the proposed architecture is effective in reducing the resource occupation with respect to N-modular redundancy, at an affordable cost in terms of application execution time. The main part of the thesis is focused on in-field software-based self-test of permanent faults. A set of observation methods exploiting existing or ad-hoc hardware is proposed, aimed at obtaining a better coverage, in particular of performance faults. An extensive quantitative evaluation of the proposed methods is presented, including a comparison with the observation methods traditionally used in end of manufacturing and in-field testing. Results show that the proposed methods are a good complement to the traditionally used final memory content observation. Moreover, they show that an adequate combination of these complementary methods allows for achieving nearly the same fault coverage achieved when continuously observing all the processor outputs, which is an observation method commonly used for production test but usually not available in-field. A very interesting by-product of what is described above is a detailed description of how to compute the fault coverage achieved by functional in-field tests using a conventional fault simulator, a tool that is usually applied in an end of manufacturing testing scenario. Finally, another relevant result in the testing area is a method to detect permanent faults inside the cache coherence logic integrated in each cache controller of a multi-core system, based on the concurrent execution of a test program by the different cores in a coordinated manner. By construction, the method achieves full fault coverage of the static faults in the addressed logic.Cuando se utilizan sistemas electrónicos en aplicaciones críticas como en las áreas biomédica, aeroespacial o automotriz, se requiere mantener una muy baja probabilidad de malfuncionamientos debidos a cualquier tipo de fallas. Los estándares y normas juegan un papel importante, forzando a los desarrolladores a diseñar y adoptar soluciones que sean capaces de alcanzar objetivos predefinidos en cuanto a seguridad y confiabilidad. Pueden utilizarse diferentes técnicas para reducir la ocurrencia de fallas o para minimizar la probabilidad de que esas fallas produzcan mal funcionamientos críticos, por ejemplo a través de la incorporación de redundancia. Lamentablemente, muchas de esas técnicas afectan en gran medida el costo de los productos y, en algunos casos, la probabilidad de malfuncionamiento sigue siendo demasiado alta. En consecuencia, una solución usada a menudo en varios escenarios consiste en realizar periódicamente un test que sea capaz de detectar la ocurrencia de una falla antes de que esta produzca un mal funcionamiento (test en campo). En general, esta solución se basa en forzar a un procesador existente dentro del dispositivo bajo prueba a ejecutar un programa de test que sea capaz de activar las posibles fallas y de hacer que sus efectos sean visibles en puntos observables. A esta metodología también se la llama auto-test basado en software, o en inglés Software-Based Self-Test (SBST). Si se lo compara con un escenario de test de fin de fabricación, el test en campo tiene fuertes limitaciones en términos de posibilidad de acceso a las entradas y salidas del sistema, porque usualmente no se dispone de equipamiento de test ni de la infraestructura de Design for Testability. En consecuencia se tiene menos posibilidades de activar las fallas y de observar sus efectos. Esta observabilidad reducida afecta particularmente la habilidad para detectar fallas de performance, es decir fallas que modifican la temporización pero no el resultado final de los cálculos. Este tipo de fallas es difícil de detectar por la sola observación del contenido final de lugares de memoria, que es el método usual que se utiliza para observar los resultados de un test en campo. Inicialmente, el presente trabajo estuvo enfocado en técnicas para tolerar fallas transitorias inducidas por radiación ionizante, llamadas en inglés Single Event Upsets (SEUs). La principal contribución de esa etapa inicial de la tesis reside en la validación experimental de la viabilidad de obtener un sistema seguro, utilizando una arquitectura que combina redundancia a nivel de tareas con el uso de módulos hardware (IP cores) ya disponibles, que minimiza en consecuencia el tiempo de desarrollo. Se replica la ejecución de las tareas y se utiliza protección de memoria para garantizar que un SEU pueda afectar a lo sumo a una sola de las réplicas. Se desarrolló una implementación para prueba de concepto que fue validada mediante inyección de fallas. Los resultados muestran la efectividad de la arquitectura, y el análisis de los recursos utilizados muestra que la arquitectura propuesta es efectiva en reducir la ocupación con respecto a la redundancia modular con N réplicas, a un costo accesible en términos de tiempo de ejecución. La parte principal de esta tesis se enfoca en el área de auto-test en campo basado en software para la detección de fallas permanentes. Se propone un conjunto de métodos de observación utilizando hardware existente o ad-hoc, con el fin de obtener una mejor cobertura, en particular de las fallas de performance. Se presenta una extensa evaluación cuantitativa de los métodos propuestos, que incluye una comparación con los métodos tradicionalmente utilizados en tests de fin de fabricación y en campo. Los resultados muestran que los métodos propuestos son un buen complemento del método tradicionalmente usado que consiste en observar el valor final del contenido de memoria. Además muestran que una adecuada combinación de estos métodos complementarios permite alcanzar casi los mismos valores de cobertura de fallas que se obtienen mediante la observación continua de todas las salidas del procesador, método comúnmente usado en tests de fin de fabricación, pero que usualmente no está disponible en campo. Un subproducto muy interesante de lo arriba expuesto es la descripción detallada del procedimiento para calcular la cobertura de fallas lograda mediante tests funcionales en campo por medio de un simulador de fallas convencional, una herramienta que usualmente se aplica en escenarios de test de fin de fabricación. Finalmente, otro resultado relevante en el área de test es un método para detectar fallas permanentes dentro de la lógica de coherencia de cache que está integrada en el controlador de cache de cada procesador en un sistema multi procesador. El método está basado en la ejecución de un programa de test en forma coordinada por parte de los diferentes procesadores. Por construcción, el método cubre completamente las fallas de la lógica mencionad

    On the test of single via related defects in digital VLSI designs

    Get PDF
    Vias are critical for digital circuit manufacturing, as they represent a common defect location, and a general DfM rule suggests replicating every instance for redundancy. When this is not achievable, a mandatory requirement is that the remaining single vias must be tested. We propose an automated method for generating tests and accurately evaluating test coverage of such defects, ready for use in any digital implementation flow and for integration within EDA tools, and also providing a useful quality metric. A prototype tool implementation and experimental results for an industrial case study are presented

    Fast Post-placement Rewiring Using Easily Detectable Functional Symmetries

    Get PDF
    Timing convergence problem arises when the estimations made during logic synthesis can not be met during physical design. In this paper, an efficient rewiring engine is proposed to explore maximal freedom after placement. The most important feature of this approach is that the existing placement solution is left intact throughout the optimization. A linear time algorithm is proposed to detect functional symmetries in the Boolean network and is used as the basis for rewiring. Integration with an existing gate sizing algorithm further proves the effectiveness of our technique. Experimental results are very promising

    Improving rewiring scheme and its applications on various circuit design problems.

    Get PDF
    Lo Wing Hang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 60-61).Abstracts in English and Chinese.Abstract --- p.iChapter 1 --- Introduction --- p.1Chapter 2 --- Preliminaries --- p.5Chapter 2.1 --- Backgrounds and Definitions --- p.5Chapter 2.1.1 --- Boolean Network --- p.5Chapter 2.1.2 --- Transitive Fanin and Fanout Cone --- p.6Chapter 2.1.3 --- Controlling and Sensitizing Values --- p.6Chapter 2.1.4 --- Stuck-at Faults and Test Generation --- p.6Chapter 2.1.5 --- Mandatory Assignments --- p.8Chapter 2.2 --- Review of ATPG-based Rewiring --- p.9Chapter 3 --- Improved Single-Pass Rewiring Scheme Using Inconsistent Assignments --- p.14Chapter 3.1 --- Introduction --- p.14Chapter 3.2 --- Overview of FIRE --- p.15Chapter 3.3 --- Alternative Wire Identification Method --- p.17Chapter 3.3.1 --- Identifying Candidate Wires --- p.17Chapter 3.3.2 --- Redundancy Test on Candidate Wire --- p.18Chapter 3.4 --- Redundancy Identification Using Inconsistent Assignments --- p.21Chapter 3.5 --- Experimental Results --- p.26Chapter 3.6 --- Conclusions --- p.28Chapter 4 --- Improving Circuit Partitioning With Rewiring Techniques --- p.29Chapter 4.1 --- Introduction --- p.29Chapter 4.2 --- Implementation of Rewiring Schemes --- p.31Chapter 4.3 --- Coupling Partitioning Algorithm With Rewiring Techniques --- p.33Chapter 4.4 --- Experimental Results --- p.37Chapter 4.5 --- Conclusions --- p.43Chapter 5 --- Circuit Logic Level Reduction by Rewiring for FPGA Mapping --- p.45Chapter 5.1 --- Introduction --- p.45Chapter 5.2 --- Overview of the Technology Mapping Problem --- p.47Chapter 5.2.1 --- Problem Formulation --- p.47Chapter 5.2.2 --- FlowMap Algorithm Outline --- p.49Chapter 5.3 --- Logic Level Reduction by Rewiring Transformations --- p.51Chapter 5.4 --- Experimental Results --- p.54Chapter 5.5 --- Conclusions --- p.57Chapter 6 --- Conclusions and Future Works --- p.58Bibliography --- p.6

    Pseudo-functional testing: bridging the gap between manufacturing test and functional operation.

    Get PDF
    Yuan, Feng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 60-65).Abstract also in Chinese.Abstract --- p.iAcknowledgement --- p.iiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Manufacturing Test --- p.1Chapter 1.1.1 --- Functional Testing vs. Structural Testing --- p.2Chapter 1.1.2 --- Fault Model --- p.3Chapter 1.1.3 --- Automatic Test Pattern Generation --- p.4Chapter 1.1.4 --- Design for Testability --- p.6Chapter 1.2 --- Pseudo-Functional Manufacturing Test --- p.13Chapter 1.3 --- Thesis Motivation and Organization --- p.16Chapter 2 --- On Systematic Illegal State Identification --- p.19Chapter 2.1 --- Introduction --- p.19Chapter 2.2 --- Preliminaries and Motivation --- p.20Chapter 2.3 --- What is the Root Cause of Illegal States? --- p.22Chapter 2.4 --- Illegal State Identification Flow --- p.26Chapter 2.5 --- Justification Scheme Construction --- p.30Chapter 2.6 --- Experimental Results --- p.34Chapter 2.7 --- Conclusion --- p.35Chapter 3 --- Compression-Aware Pseudo-Functional Testing --- p.36Chapter 3.1 --- Introduction --- p.36Chapter 3.2 --- Motivation --- p.38Chapter 3.3 --- Proposed Methodology --- p.40Chapter 3.4 --- Pattern Generation in Compression-Aware Pseudo-Functional Testing --- p.42Chapter 3.4.1 --- Circuit Pre-Processing --- p.42Chapter 3.4.2 --- Pseudo-Functional Random Pattern Generation with Multi-Launch Cycles --- p.43Chapter 3.4.3 --- Compressible Test Pattern Generation for Pseudo-Functional Testing --- p.45Chapter 3.5 --- Experimental Results --- p.52Chapter 3.5.1 --- Experimental Setup --- p.52Chapter 3.5.2 --- Results and Discussion --- p.54Chapter 3.6 --- Conclusion --- p.56Chapter 4 --- Conclusion and Future Work --- p.58Bibliography --- p.6

    FPGA technology mapping optimizaion by rewiring algorithms.

    Get PDF
    Tang Wai Chung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 40-41).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 2 --- Rewiring Algorithms --- p.3Chapter 2.1 --- REWIRE --- p.5Chapter 2.2 --- RAMFIRE --- p.7Chapter 2.3 --- GBAW --- p.8Chapter 3 --- FPGA Technology Mapping --- p.11Chapter 3.1 --- Problem Definition --- p.13Chapter 3.2 --- Network-flow-based Algorithms for FPGA Technology Mapping --- p.16Chapter 3.2.1 --- FlowMap --- p.16Chapter 3.2.2 --- FlowSYN --- p.21Chapter 3.2.3 --- CutMap --- p.22Chapter 4 --- LUT Minimization by Rewiring --- p.24Chapter 4.1 --- Greedy Decision Heuristic for LUT Minimization --- p.27Chapter 4.2 --- Experimental Result --- p.28Chapter 5 --- Conclusion --- p.38Bibliography --- p.4
    corecore