2,047 research outputs found

    Survey on counting special types of polynomials

    Full text link
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gau{\ss} count the remaining ones, approximately and exactly. For polynomials in two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. This survey presents counting results for some special classes of multivariate polynomials over a finite field, namely the the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), the relatively irreducible ones (irreducible but reducible over an extension field), the decomposable ones, and also for reducible space curves. These come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f is decomposable if f = g o h for some nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we obtain closely matching upper and lower bounds on the number of decomposable polynomials. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. The crux of the matter is to count the number of collisions, where essentially different (g, h) yield the same f. We present a classification of all collisions at degree n = p^2 which yields an exact count of those decomposable polynomials.Comment: to appear in Jaime Gutierrez, Josef Schicho & Martin Weimann (editors), Computer Algebra and Polynomials, Lecture Notes in Computer Scienc

    Tame Decompositions and Collisions

    Full text link
    A univariate polynomial f over a field is decomposable if f = g o h = g(h) for nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials over a finite field. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we have reasonable bounds on the number of decomposables of degree n. Nevertheless, no exact formula is known if nn has more than two prime factors. In order to count the decomposables, one wants to know, under a suitable normalization, the number of collisions, where essentially different (g, h) yield the same f. In the tame case, Ritt's Second Theorem classifies all 2-collisions. We introduce a normal form for multi-collisions of decompositions of arbitrary length with exact description of the (non)uniqueness of the parameters. We obtain an efficiently computable formula for the exact number of such collisions at degree n over a finite field of characteristic coprime to p. This leads to an algorithm for the exact number of decomposable polynomials at degree n over a finite field Fq in the tame case

    Opposite power series

    Get PDF
    Let γn\gamma_n (n∈Z≥0n\in \mathbb{Z}_{\ge0}) be a sequence of complex numbers, which is tame: 0<∃u≤γn−1/γn≤∃v<∞0<\exists u\le \gamma_{n-1}/\gamma_n \le \exists v<\infty for all n>0n>0. We show a resonance between the singularities of the function of the power series P(t):=∑n=0∞γntnP(t):=\sum_{n=0}^\infty \gamma_n t^n on its boundary of the disc of convergence and the oscillation behavior of the sequences γn−k/γn\gamma_{n-k}/\gamma_n (n∈Z>>0n\in \mathbb{Z}_{>>0}) for k>0k>0. The resonance is proven by introducing the space of opposite power series, which is the compact subspace of the space of all formal power series in the opposite variable s=1/ts=1/t and is defined as the accumulating set of the sequence Xn(s):=∑k=0nγn−kγntkX_n(s):=\sum_{k=0}^n\frac{\gamma_{n-k}}{\gamma_n}t^k (n∈Z≥0n\in \mathbb{Z}_{\ge0}). We analyze in details an example of the growth series P(t)P(t) for the modular group PSL(2,Z)PSL(2,Z) due to Machi.Comment: 25 page

    Non-archimedean Yomdin-Gromov parametrizations and points of bounded height

    Full text link
    We prove an analogue of the Yomdin-Gromov Lemma for pp-adic definable sets and more broadly in a non-archimedean, definable context. This analogue keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of pp-adic subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree lying on an algebraic variety defined over C((t))\mathbb{C} ((t)), in analogy to results by Pila and Wilkie, resp. by Bombieri and Pila. Along the way we prove, for definable functions in a general context of non-archimedean geometry, that local Lipschitz continuity implies piecewise global Lipschitz continuity.Comment: 54 pages; revised, section 5.6 adde
    • …
    corecore