135 research outputs found

    Hierarchy and Expansiveness in Two-Dimensional Subshifts of Finite Type

    Get PDF
    Subshifts are sets of configurations over an infinite grid defined by a set of forbidden patterns. In this thesis, we study two-dimensional subshifts offinite type (2D SFTs), where the underlying grid is Z2 and the set of for-bidden patterns is finite. We are mainly interested in the interplay between the computational power of 2D SFTs and their geometry, examined through the concept of expansive subdynamics. 2D SFTs with expansive directions form an interesting and natural class of subshifts that lie between dimensions 1 and 2. An SFT that has only one non-expansive direction is called extremely expansive. We prove that in many aspects, extremely expansive 2D SFTs display the totality of behaviours of general 2D SFTs. For example, we construct an aperiodic extremely expansive 2D SFT and we prove that the emptiness problem is undecidable even when restricted to the class of extremely expansive 2D SFTs. We also prove that every Medvedev class contains an extremely expansive 2D SFT and we provide a characterization of the sets of directions that can be the set of non-expansive directions of a 2D SFT. Finally, we prove that for every computable sequence of 2D SFTs with an expansive direction, there exists a universal object that simulates all of the elements of the sequence. We use the so called hierarchical, self-simulating or fixed-point method for constructing 2D SFTs which has been previously used by Ga´cs, Durand, Romashchenko and Shen.Siirretty Doriast

    Life: The Communicative Structure

    Get PDF

    Hierarchy and Expansiveness in Two-Dimensional Subshifts of Finite Type

    Get PDF
    Using a deterministic version of the self-similar (or hierarchical, or fixed-point ) method for constructing 2-dimensional subshifts of finite type (SFTs), we construct aperiodic 2D SFTs with a unique direction of non-expansiveness and prove that the emptiness problem of SFTs is undecidable even in this restricted case. As an additional application of our method, we characterize the sets of directions that can be the set of non-expansive directions of 2D SFTs.Comment: 72 pages, main body of the author's PhD Thesis, most of the results obtained in collaboration with Pierre Guillo

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Understanding Language Evolution in Overlapping Generations of Reinforcement Learning Agents

    Get PDF
    corecore