3,126 research outputs found

    Learning To Scale Up Search-Driven Data Integration

    Get PDF
    A recent movement to tackle the long-standing data integration problem is a compositional and iterative approach, termed “pay-as-you-go” data integration. Under this model, the objective is to immediately support queries over “partly integrated” data, and to enable the user community to drive integration of the data that relate to their actual information needs. Over time, data will be gradually integrated. While the pay-as-you-go vision has been well-articulated for some time, only recently have we begun to understand how it can be manifested into a system implementation. One branch of this effort has focused on enabling queries through keyword search-driven data integration, in which users pose queries over partly integrated data encoded as a graph, receive ranked answers generated from data and metadata that is linked at query-time, and provide feedback on those answers. From this user feedback, the system learns to repair bad schema matches or record links. Many real world issues of uncertainty and diversity in search-driven integration remain open. Such tasks in search-driven integration require a combination of human guidance and machine learning. The challenge is how to make maximal use of limited human input. This thesis develops three methods to scale up search-driven integration, through learning from expert feedback: (1) active learning techniques to repair links from small amounts of user feedback; (2) collaborative learning techniques to combine users’ conflicting feedback; and (3) debugging techniques to identify where data experts could best improve integration quality. We implement these methods within the Q System, a prototype of search-driven integration, and validate their effectiveness over real-world datasets

    User Review Analysis for Requirement Elicitation: Thesis and the framework prototype's source code

    Get PDF
    Online reviews are an important channel for requirement elicitation. However, requirement engineers face challenges when analysing online user reviews, such as data volumes, technical supports, existing techniques, and legal barriers. Juan Wang proposes a framework solving user review analysis problems for the purpose of requirement elicitation that sets up a channel from downloading user reviews to structured analysis data. The main contributions of her work are: (1) the thesis proposed a framework to solve the user review analysis problem for requirement elicitation; (2) the prototype of this framework proves its feasibility; (3) the experiments prove the effectiveness and efficiency of this framework. This resource here is the latest version of Juan Wang's PhD thesis "User Review Analysis for Requirement Elicitation" and all the source code of the prototype for the framework as the results of her thesis

    The Role of Human Knowledge in Explainable AI

    Get PDF
    As the performance and complexity of machine learning models have grown significantly over the last years, there has been an increasing need to develop methodologies to describe their behaviour. Such a need has mainly arisen due to the widespread use of black-box models, i.e., high-performing models whose internal logic is challenging to describe and understand. Therefore, the machine learning and AI field is facing a new challenge: making models more explainable through appropriate techniques. The final goal of an explainability method is to faithfully describe the behaviour of a (black-box) model to users who can get a better understanding of its logic, thus increasing the trust and acceptance of the system. Unfortunately, state-of-the-art explainability approaches may not be enough to guarantee the full understandability of explanations from a human perspective. For this reason, human-in-the-loop methods have been widely employed to enhance and/or evaluate explanations of machine learning models. These approaches focus on collecting human knowledge that AI systems can then employ or involving humans to achieve their objectives (e.g., evaluating or improving the system). This article aims to present a literature overview on collecting and employing human knowledge to improve and evaluate the understandability of machine learning models through human-in-the-loop approaches. Furthermore, a discussion on the challenges, state-of-the-art, and future trends in explainability is also provided
    • …
    corecore