4 research outputs found

    On Deadlockability, Liveness and Reversibility in Subclasses of Weighted Petri Nets

    Get PDF
    International audienceLiveness, (non-)deadlockability and reversibility are behavioral properties of Petri nets that are fundamental for many real-world systems. Such properties are often required to be mono-tonic, meaning preserved upon any increase of the marking. However, their checking is intractable in general and their monotonicity is not always satisfied. To simplify the analysis of these features, structural approaches have been fruitfully exploited in particular subclasses of Petri nets, deriving the behavior from the underlying graph and the initial marking only, often in polynomial time. In this paper, we further develop these efficient structural methods to analyze deadlockability, live-ness, reversibility and their monotonicity in weighted Petri nets. We focus on the join-free subclass, which forbids synchronizations, and on the homogeneous asymmetric-choice subclass, which allows conflicts and synchronizations in a restricted fashion. For the join-free nets, we provide several structural conditions for checking liveness, (non-)deadlock-ability, reversibility and their monotonicity. Some of these methods operate in polynomial time. Furthermore , in this class, we show that liveness, non-deadlockability and reversibility, taken together or separately, are not always monotonic, even under the assumptions of structural boundedness and structural liveness. These facts delineate more sharply the frontier between monotonicity and non-monotonicity of the behavior in weighted Petri nets, present already in the join-free subclass. In addition, we use part of this new material to correct a flaw in the proof of a previous characterization of monotonic liveness and boundedness for homogeneous asymmetric-choice nets, published in 2004 and left unnoticed

    Computação paralela utilizando GPU na análise de redes de Petri IOPT

    Get PDF
    O principal objetivo desta dissertação é melhorar o tempo de execução na construção do espaço de estados associado a um modelo de rede de Petri Input-Output Place-Transition (IOPT), utilizando computação paralela numa Graphics Processing Unit (GPU) instalada no computador com um servidor de IOPT-Tools em execução, permitindo o processamento descrito. Os modelos de sistema de controlo desenvolvidos em Rede de Petri (RdP) podem ser muito complexos, o que pode tornar de difícil compreensão o seu comportamento. Devido à variedade e à dimensão das redes, os sistemas desenvolvidos em RdP podem apresentar um grafo associado de espaço de estados com muitos nós e arcos, tornando-se um problema sobre o ponto de vista computacional quando se pretende realizar a verificação das propriedades do modelo. Isto porque, na construção do grafo do espaço de estados pode ocorrer uma explosão do número de estados, ou seja, o grafo pode ser tão grande que dificulta a procura e análise de todos os estados que o modelo pode alcançar. Com a utilização da GPU pode-se contribuir para mitigar este problema, aumentando o desempenho no processamento da construção do espaço de estados. O algoritmo implementado para o processamento da construção do espaço de estados utilizando GPU é adaptação do código gerado automaticamente pela plataforma IOTP-Tools. Para executar o algoritmo é usada a Compute Unified Device Architecture (CUDA) da NVidia. A CUDA permite executar o algoritmo em Central Processing Unit (CPU) e Graphics Processing Unit (GPU). A parte sequencial do algoritmo é executada na CPU e a parte do processamento intensivo, ou seja, o tratamento dos estados não processados é executada na GPU
    corecore