11,766 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Local-set-based Graph Signal Reconstruction

    Full text link
    Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip

    Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI

    Full text link
    With the objective of employing graphs toward a more generalized theory of signal processing, we present a novel sampling framework for (wavelet-)sparse signals defined on circulant graphs which extends basic properties of Finite Rate of Innovation (FRI) theory to the graph domain, and can be applied to arbitrary graphs via suitable approximation schemes. At its core, the introduced Graph-FRI-framework states that any K-sparse signal on the vertices of a circulant graph can be perfectly reconstructed from its dimensionality-reduced representation in the graph spectral domain, the Graph Fourier Transform (GFT), of minimum size 2K. By leveraging the recently developed theory of e-splines and e-spline wavelets on graphs, one can decompose this graph spectral transformation into the multiresolution low-pass filtering operation with a graph e-spline filter, and subsequent transformation to the spectral graph domain; this allows to infer a distinct sampling pattern, and, ultimately, the structure of an associated coarsened graph, which preserves essential properties of the original, including circularity and, where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017

    DeepInf: Social Influence Prediction with Deep Learning

    Full text link
    Social and information networking activities such as on Facebook, Twitter, WeChat, and Weibo have become an indispensable part of our everyday life, where we can easily access friends' behaviors and are in turn influenced by them. Consequently, an effective social influence prediction for each user is critical for a variety of applications such as online recommendation and advertising. Conventional social influence prediction approaches typically design various hand-crafted rules to extract user- and network-specific features. However, their effectiveness heavily relies on the knowledge of domain experts. As a result, it is usually difficult to generalize them into different domains. Inspired by the recent success of deep neural networks in a wide range of computing applications, we design an end-to-end framework, DeepInf, to learn users' latent feature representation for predicting social influence. In general, DeepInf takes a user's local network as the input to a graph neural network for learning her latent social representation. We design strategies to incorporate both network structures and user-specific features into convolutional neural and attention networks. Extensive experiments on Open Academic Graph, Twitter, Weibo, and Digg, representing different types of social and information networks, demonstrate that the proposed end-to-end model, DeepInf, significantly outperforms traditional feature engineering-based approaches, suggesting the effectiveness of representation learning for social applications.Comment: 10 pages, 5 figures, to appear in KDD 2018 proceeding

    A Distributed Tracking Algorithm for Reconstruction of Graph Signals

    Full text link
    The rapid development of signal processing on graphs provides a new perspective for processing large-scale data associated with irregular domains. In many practical applications, it is necessary to handle massive data sets through complex networks, in which most nodes have limited computing power. Designing efficient distributed algorithms is critical for this task. This paper focuses on the distributed reconstruction of a time-varying bandlimited graph signal based on observations sampled at a subset of selected nodes. A distributed least square reconstruction (DLSR) algorithm is proposed to recover the unknown signal iteratively, by allowing neighboring nodes to communicate with one another and make fast updates. DLSR uses a decay scheme to annihilate the out-of-band energy occurring in the reconstruction process, which is inevitably caused by the transmission delay in distributed systems. Proof of convergence and error bounds for DLSR are provided in this paper, suggesting that the algorithm is able to track time-varying graph signals and perfectly reconstruct time-invariant signals. The DLSR algorithm is numerically experimented with synthetic data and real-world sensor network data, which verifies its ability in tracking slowly time-varying graph signals.Comment: 30 pages, 9 figures, 2 tables, journal pape
    • …
    corecore