425 research outputs found

    Properties of dense partially random graphs

    Full text link
    We study the properties of random graphs where for each vertex a {\it neighbourhood} has been previously defined. The probability of an edge joining two vertices depends on whether the vertices are neighbours or not, as happens in Small World Graphs (SWGs). But we consider the case where the average degree of each node is of order of the size of the graph (unlike SWGs, which are sparse). This allows us to calculate the mean distance and clustering, that are qualitatively similar (although not in such a dramatic scale range) to the case of SWGs. We also obtain analytically the distribution of eigenvalues of the corresponding adjacency matrices. This distribution is discrete for large eigenvalues and continuous for small eigenvalues. The continuous part of the distribution follows a semicircle law, whose width is proportional to the "disorder" of the graph, whereas the discrete part is simply a rescaling of the spectrum of the substrate. We apply our results to the calculation of the mixing rate and the synchronizability threshold.Comment: 14 pages. To be published in Physical Review

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Neural Network Approximation of Continuous Functions in High Dimensions with Applications to Inverse Problems

    Full text link
    The remarkable successes of neural networks in a huge variety of inverse problems have fueled their adoption in disciplines ranging from medical imaging to seismic analysis over the past decade. However, the high dimensionality of such inverse problems has simultaneously left current theory, which predicts that networks should scale exponentially in the dimension of the problem, unable to explain why the seemingly small networks used in these settings work as well as they do in practice. To reduce this gap between theory and practice, we provide a general method for bounding the complexity required for a neural network to approximate a H\"older (or uniformly) continuous function defined on a high-dimensional set with a low-complexity structure. The approach is based on the observation that the existence of a Johnson-Lindenstrauss embedding A∈Rd×DA\in\mathbb{R}^{d\times D} of a given high-dimensional set S⊂RDS\subset\mathbb{R}^D into a low dimensional cube [−M,M]d[-M,M]^d implies that for any H\"older (or uniformly) continuous function f:S→Rpf:S\to\mathbb{R}^p, there exists a H\"older (or uniformly) continuous function g:[−M,M]d→Rpg:[-M,M]^d\to\mathbb{R}^p such that g(Ax)=f(x)g(Ax)=f(x) for all x∈Sx\in S. Hence, if one has a neural network which approximates g:[−M,M]d→Rpg:[-M,M]^d\to\mathbb{R}^p, then a layer can be added that implements the JL embedding AA to obtain a neural network that approximates f:S→Rpf:S\to\mathbb{R}^p. By pairing JL embedding results along with results on approximation of H\"older (or uniformly) continuous functions by neural networks, one then obtains results which bound the complexity required for a neural network to approximate H\"older (or uniformly) continuous functions on high dimensional sets. The end result is a general theoretical framework which can then be used to better explain the observed empirical successes of smaller networks in a wider variety of inverse problems than current theory allows.Comment: 26 pages, 1 figur

    Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning

    Full text link
    The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.Comment: 71 pages, 42 Figures, 1 Table, 1 Appendix. arXiv admin note: text overlap with arXiv:2109.08184 by other author

    Mixed-Weight Open Locating-Dominating Sets

    Get PDF
    The detection and location of issues in a network is a common problem encompassing a wide variety of research areas. Location-detection problems have been studied for wireless sensor networks and environmental monitoring, microprocessor fault detection, public utility contamination, and finding intruders in buildings. Modeling these systems as a graph, we want to find the smallest subset of nodes that, when sensors are placed at those locations, can detect and locate any anomalies that arise. One type of set that solves this problem is the open locating-dominating set (OLD-set), a set of nodes that forms a unique and nonempty neighborhood with every node in the graph. For this work, we begin with a study of OLD-sets in circulant graphs. Circulant graphs are a group of regular cyclic graphs that are often used in massively parallel systems. We prove the optimal OLD-set size for two circulant graphs using two proof techniques: the discharging method and Hall\u27s Theorem. Next we introduce the mixed-weight open locating-dominating set (mixed-weight OLD-set), an extension of the OLD-set. The mixed-weight OLD-set allows nodes in the graph to have different weights, representing systems that use sensors of varying strengths. This is a novel approach to the study of location-detection problems. We show that the decision problem for the minimum mixed-weight OLD-set, for any weights up to positive integer d, is NP-complete. We find the size of mixed-weight OLD-sets in paths and cycles for weights 1 and 2. We consider mixed-weight OLD-sets in random graphs by providing probabilistic bounds on the size of the mixed-weight OLD-set and use simulation to reinforce the theoretical results. Finally, we build and study an integer linear program to solve for mixed-weight OLD-sets and use greedy algorithms to generate mixed-weight OLD-set estimates in random geometric graphs. We also extend our results for mixed-weight OLD-sets in random graphs to random geometric graphs by estimating the probabilistic upper bound for the size of the set
    • 

    corecore