3,001 research outputs found

    A note on the axioms for Zilber's pseudo-exponential fields

    Get PDF
    We show that Zilber's conjecture that complex exponentiation is isomorphic to his pseudo-exponentiation follows from the a priori simpler conjecture that they are elementarily equivalent. An analysis of the first-order types in pseudo-exponentiation leads to a description of the elementary embeddings, and the result that pseudo-exponential fields are precisely the models of their common first-order theory which are atomic over exponential transcendence bases. We also show that the class of all pseudo-exponential fields is an example of a non-finitary abstract elementary class, answering a question of Kes\"al\"a and Baldwin.Comment: 10 pages, v2: substantial alteration

    MDL Convergence Speed for Bernoulli Sequences

    Get PDF
    The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL, in general one can only have loss bounds which are finite but exponentially larger than those for Bayes mixtures. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We discuss the application to Machine Learning tasks such as classification and hypothesis testing, and generalization to countable classes of i.i.d. models.Comment: 28 page

    Similarity and Coincidence Isometries for Modules

    Full text link
    The groups of (linear) similarity and coincidence isometries of certain modules in d-dimensional Euclidean space, which naturally occur in quasicrystallography, are considered. It is shown that the structure of the factor group of similarity modulo coincidence isometries is the direct sum of cyclic groups of prime power orders that divide d. In particular, if the dimension d is a prime number p, the factor group is an elementary Abelian p-group. This generalizes previous results obtained for lattices to situations relevant in quasicrystallography.Comment: 14 page

    Cross sections for geodesic flows and \alpha-continued fractions

    Full text link
    We adjust Arnoux's coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the \alpha-continued fractions, for each α\alpha in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced \alpha-variants.Comment: 20 pages, 2 figure

    On the Convergence Speed of MDL Predictions for Bernoulli Sequences

    Full text link
    We consider the Minimum Description Length principle for online sequence prediction. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is bounded, implying convergence with probability one, and (b) it additionally specifies a `rate of convergence'. Generally, for MDL only exponential loss bounds hold, as opposed to the linear bounds for a Bayes mixture. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. The results apply to many Machine Learning tasks including classification and hypothesis testing. We provide arguments that our theorems generalize to countable classes of i.i.d. models.Comment: 17 page
    • …
    corecore