29 research outputs found

    Corecursive Algebras, Corecursive Monads and Bloom Monads

    Full text link
    An algebra is called corecursive if from every coalgebra a unique coalgebra-to-algebra homomorphism exists into it. We prove that free corecursive algebras are obtained as coproducts of the terminal coalgebra (considered as an algebra) and free algebras. The monad of free corecursive algebras is proved to be the free corecursive monad, where the concept of corecursive monad is a generalization of Elgot's iterative monads, analogous to corecursive algebras generalizing completely iterative algebras. We also characterize the Eilenberg-Moore algebras for the free corecursive monad and call them Bloom algebras

    On Corecursive Algebras for Functors Preserving Coproducts

    Get PDF
    For an endofunctor H on a hyper-extensive category preserving countable coproducts we describe the free corecursive algebra on Y as the coproduct of the terminal coalgebra for H and the free H-algebra on Y. As a consequence, we derive that H is a cia functor, i.e., its corecursive algebras are precisely the cias (completely iterative algebras). Also all functors H(-) + Y are then cia functors. For finitary set functors we prove that, conversely, if H is a cia functor, then it has the form H = W times (-) + Y for some sets W and Y

    Corecursive Algebras, Corecursive Monads and Bloom Monads

    Full text link

    Proper Functors and Fixed Points for Finite Behaviour

    Full text link
    The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras. In this paper we consider functors on algebraic categories. For them the rational fixed point may no longer be fully abstract, i.e. a subcoalgebra of the final coalgebra. Inspired by \'Esik and Maletti's notion of a proper semiring, we introduce the notion of a proper functor. We show that for proper functors the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as technical tools for soundness and completeness proofs for coalgebraic regular expression calculi, e.g. for weighted automata

    Generalised coinduction

    Get PDF
    Final coalgebras of a functor F are suited for an abstract description of infinite datatypes and dynamical systems. Functions into such a domain are specified by coinductive definitions. The format these specifications take when their justification is directly based on finality is called the coiteration schema here. In applications it often turns out to be too rigid to allow for a convenient description of the functions under consideration. Thus, generalisations or variations are desired. We introduce a generic ?-coiteration schema that can be instantiated by a distributive law ? of some functor T over F and show that - under mild assumptions on the underlying category - one obtains principles which uniquely characterise arrows into the carrier of a final F-coalgebra as well. Certain instances of ?-coiteration can be shown to specify arrows that fail to be coiterative. Examples are the duals of primitive recursion and course-of-value iteration, which are known extensions of coiteration. One can furthermore obtain schemata justifying recursive specifications that involve operators such as arithmetic operations on power series, regular operators for languages, or parallel and sequential composition of processes. Next, the same type of distributive law ? is used to generalise coinductive proof techniques. To this end, we introduce the notion of a ?-bisimulation relation, many instances of which are weaker than the conventional definition of a bisimulation. It specialises e.g. to what could be called bisimulation up-to-equality or bisimulation up-to-context for contexts built from operators of the type mentioned above. We give a proof showing that every ?-bisimulation only contains pairs of bisimilar states. This principle leads to simpler proofs through the use of less complex relations

    Interleaving data and effects

    Get PDF
    The study of programming with and reasoning about inductive datatypes such as lists and trees has benefited from the simple categorical principle of initial algebras. In initial algebra semantics, each inductive datatype is represented by an initial f-algebra for an appropriate functor f. The initial algebra principle then supports the straightforward derivation of definitional principles and proof principles for these datatypes. This technique has been expanded to a whole methodology of structured functional programming, often called origami programming. In this article we show how to extend initial algebra semantics from pure inductive datatypes to inductive datatypes interleaved with computational effects. Inductive datatypes interleaved with effects arise naturally in many computational settings. For example, incrementally reading characters from a file generates a list of characters interleaved with input/output actions, and lazily constructed infinite values can be represented by pure data interleaved with the possibility of non-terminating computation. Straightforward application of initial algebra techniques to effectful datatypes leads either to unsound conclusions if we ignore the possibility of effects, or to unnecessarily complicated reasoning because the pure and effectful concerns must be considered simultaneously. We show how pure and effectful concerns can be separated using the abstraction of initial f-and-m-algebras, where the functor f describes the pure part of a datatype and the monad m describes the interleaved effects. Because initial f-and-m-algebras are the analogue for the effectful setting of initial f-algebras, they support the extension of the standard definitional and proof principles to the effectful setting. Initial f-and-m-algebras are originally due to Filinski and Støvring, who studied them in the category Cpo. They were subsequently generalised to arbitrary categories by Atkey, Ghani, Jacobs, and Johann in a FoSSaCS 2012 paper. In this article we aim to introduce the general concept of initial f-and-m-algebras to a general functional programming audience

    On Well-Founded and Recursive Coalgebras

    Full text link
    This paper studies fundamental questions concerning category-theoretic models of induction and recursion. We are concerned with the relationship between well-founded and recursive coalgebras for an endofunctor. For monomorphism preserving endofunctors on complete and well-powered categories every coalgebra has a well-founded part, and we provide a new, shorter proof that this is the coreflection in the category of all well-founded coalgebras. We present a new more general proof of Taylor's General Recursion Theorem that every well-founded coalgebra is recursive, and we study under which hypothesis the converse holds. In addition, we present a new equivalent characterization of well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-algebra morphism to the initial algebra

    Efficient and Modular Coalgebraic Partition Refinement

    Full text link
    We present a generic partition refinement algorithm that quotients coalgebraic systems by behavioural equivalence, an important task in system analysis and verification. Coalgebraic generality allows us to cover not only classical relational systems but also, e.g. various forms of weighted systems and furthermore to flexibly combine existing system types. Under assumptions on the type functor that allow representing its finite coalgebras in terms of nodes and edges, our algorithm runs in time O(mlogn)\mathcal{O}(m\cdot \log n) where nn and mm are the numbers of nodes and edges, respectively. The generic complexity result and the possibility of combining system types yields a toolbox for efficient partition refinement algorithms. Instances of our generic algorithm match the run-time of the best known algorithms for unlabelled transition systems, Markov chains, deterministic automata (with fixed alphabets), Segala systems, and for color refinement.Comment: Extended journal version of the conference paper arXiv:1705.08362. Beside reorganization of the material, the introductory section 3 is entirely new and the other new section 7 contains new mathematical result
    corecore