43,173 research outputs found

    On the effect of combining cooperative communication with sleep mode

    Get PDF
    Cooperation is crucial in (next-generation) wireless networks as it can greatly attribute to ensuring connectivity, reliability, performance, ... Relaying looks promising in a wide variety of network types (cellular, ad-hoc on-demand), each using a certain protocol. Energy efficiency constitutes another key aspect of such networks, as battery power is often limited, and is typically achieved by sleep mode operation. As the range of applications is very broad, rather than modelling one of the protocols in detail, we construct a high-level model capturing the two essential characteristics of cooperation and energy efficiency: relaying and sleep mode, and study their interaction. The used analytical approach allows for accurate performance evaluation and enables us to unveil less trivial trade-offs and to formulate rules-of-thumb applicable across all potential scenarios

    Robust Nash Dynamic Game Strategy for User Cooperation Energy Efficiency in Wireless Cellular Networks

    Get PDF
    Recently, there is an emerging trend of addressing “energy efficiency” aspect of wireless communications. It has been shown that cooperating users relay each other\u27s information to improve data rates. The energy is limited in the wireless cellular network, but the mobile users refuse to relay. This paper presents an approach that encourages user cooperation in order to improve the energy efficiency. The game theory is an efficient method to solve such conflicts. We present a cellular framework in which two mobile users, who desire to communicate with a common base station, may cooperate via decode-and-forward relaying. In the case of imperfect information assumption, cooperative Nash dynamic game is used between the two users\u27 cooperation to tackle the decision making problems: whether to cooperate and how to cooperate in wireless networks. The scheme based on “cooperative game theory” can achieve general pareto-optimal performance for cooperative games, and thus, maximize the entire system payoff while maintaining fairness

    Mobile edge computing in wireless communication networks: design and optimization

    Get PDF
    This dissertation studies the design and optimization of applying mobile edge computing (MEC) in three kinds of advanced wireless networks, which is motivated by three non-trivial but not thoroughly studied topics in the existing MEC-related literature. First, we study the application of MEC in wireless powered cooperation-assisted systems. The technology of wireless power transfer (WPT) used at the access point (AP) is capable of providing sustainable energy supply for resource-limited user equipment (UEs) to support computation offloading, but also introduces the double-near-far effect into wireless powered communication networks (WPCNs). By leveraging cooperation among near-far users, the system performance can be highly improved through effectively suppressing the double-near-far effect in WPCNs. Then, we consider the application of MEC in the unmanned aerial vehicle (UAV)-assisted relaying systems to make better use of the flexible features of UAV as well as its computing resources. The adopted UAV not only acts as an MEC server to help compute UEs' offloaded tasks but also a relay to forward UEs' offloaded tasks to the AP, thus such kind of cooperation between the UAV and the AP can take the advantages of both sides so as to improve the system performance. Last, heterogeneous cellular networks (HetNets) with the coexistence of MEC and central cloud computing (CCC) are studied to show the complementary and promotional effects between MEC and CCC. The small base stations (SBSs) empowered by edge clouds offer limited edge computing services for UEs, whereas the macro base station (MBS) provides high-performance CCC services for UEs via restricted multiple-input multiple-output (MIMO) backhauls to their associated SBSs. With further considering the case with massive MIMO backhauls, the system performance can be further improved while significantly reducing the computational complexity. In the aforementioned three advanced MEC systems, we mainly focus on minimizing the energy consumption of the systems subject to proper latency constraints, due to the fact that energy consumption and latency are regarded as two important metrics for measuring the performance of MEC-related works. Effective optimization algorithms are proposed to solve the corresponding energy minimization problems, which are further validated by numerical results

    Energy Cooperation in Battery-Free Wireless Communications with Radio Frequency Energy Harvesting

    Get PDF
    Radio frequency (RF) energy harvesting techniques are becoming a potential method to power battery-free wireless networks. In RF energy harvesting communications, energy cooperation enables shaping and optimization of the energy arrivals at the energy-receiving node to improve the overall system performance. In this paper, we proposed an energy cooperation scheme that enables energy cooperation in battery-free wireless networks with RF harvesting. We first study the battery-free wireless network with RF energy harvesting then state the problem that optimizing the system performance with limited harvesting energy through new energy cooperation protocol. Finally, from the extensive simulation results, our energy cooperation protocol performs better than the original battery-free wireless network solution.特

    Cost-Aware Green Cellular Networks with Energy and Communication Cooperation

    Full text link
    Energy cost of cellular networks is ever-increasing to match the surge of wireless data traffic, and the saving of this cost is important to reduce the operational expenditure (OPEX) of wireless operators in future. The recent advancements of renewable energy integration and two-way energy flow in smart grid provide potential new solutions to save the cost. However, they also impose challenges, especially on how to use the stochastically and spatially distributed renewable energy harvested at cellular base stations (BSs) to reliably supply time- and space-varying wireless traffic over cellular networks. To overcome these challenges, in this article we present three approaches, namely, {\emph{energy cooperation, communication cooperation, and joint energy and communication cooperation}}, in which different BSs bidirectionally trade or share energy via the aggregator in smart grid, and/or share wireless resources and shift loads with each other to reduce the total energy cost.Comment: Submitted for possible publicatio

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    corecore