17,985 research outputs found

    Aggregation for Gaussian regression

    Full text link
    This paper studies statistical aggregation procedures in the regression setting. A motivating factor is the existence of many different methods of estimation, leading to possibly competing estimators. We consider here three different types of aggregation: model selection (MS) aggregation, convex (C) aggregation and linear (L) aggregation. The objective of (MS) is to select the optimal single estimator from the list; that of (C) is to select the optimal convex combination of the given estimators; and that of (L) is to select the optimal linear combination of the given estimators. We are interested in evaluating the rates of convergence of the excess risks of the estimators obtained by these procedures. Our approach is motivated by recently published minimax results [Nemirovski, A. (2000). Topics in non-parametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1998). Lecture Notes in Math. 1738 85--277. Springer, Berlin; Tsybakov, A. B. (2003). Optimal rates of aggregation. Learning Theory and Kernel Machines. Lecture Notes in Artificial Intelligence 2777 303--313. Springer, Heidelberg]. There exist competing aggregation procedures achieving optimal convergence rates for each of the (MS), (C) and (L) cases separately. Since these procedures are not directly comparable with each other, we suggest an alternative solution. We prove that all three optimal rates, as well as those for the newly introduced (S) aggregation (subset selection), are nearly achieved via a single ``universal'' aggregation procedure. The procedure consists of mixing the initial estimators with weights obtained by penalized least squares. Two different penalties are considered: one of them is of the BIC type, the second one is a data-dependent â„“1\ell_1-type penalty.Comment: Published in at http://dx.doi.org/10.1214/009053606000001587 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Second-Order Inference for the Mean of a Variable Missing at Random

    Get PDF
    We present a second-order estimator of the mean of a variable subject to missingness, under the missing at random assumption. The estimator improves upon existing methods by using an approximate second-order expansion of the parameter functional, in addition to the first-order expansion employed by standard doubly robust methods. This results in weaker assumptions about the convergence rates necessary to establish consistency, local efficiency, and asymptotic linearity. The general estimation strategy is developed under the targeted minimum loss-based estimation (TMLE) framework. We present a simulation comparing the sensitivity of the first and second order estimators to the convergence rate of the initial estimators of the outcome regression and missingness score. In our simulation, the second-order TMLE improved the coverage probability of a confidence interval by up to 85%. In addition, we present a first-order estimator inspired by a second-order expansion of the parameter functional. This estimator only requires one-dimensional smoothing, whereas implementation of the second-order TMLE generally requires kernel smoothing on the covariate space. The first-order estimator proposed is expected to have improved finite sample performance compared to existing first-order estimators. In our simulations, the proposed first-order estimator improved the coverage probability by up to 90%. We provide an illustration of our methods using a publicly available dataset to determine the effect of an anticoagulant on health outcomes of patients undergoing percutaneous coronary intervention. We provide R code implementing the proposed estimator
    • …
    corecore