5,838 research outputs found

    Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems

    Get PDF
    An increasing number of distributed real-time embedded systems face the critical challenge of providing Quality of Service (QoS) guarantees in open and unpredictable environments. For example, such systems often need to enforce CPU utilization bounds on multiple processors in order to avoid overload and meet end-to-end dead-lines, even when task execution times deviate signiïŹcantly from their estimated values or change dynamically at run-time. This dissertation presents an adaptive QoS control framework which includes a set of control design methodologies to provide robust QoS assurance for systems at diïŹ€erent scales. To demonstrate its eïŹ€ectiveness, we have applied the framework to the end-to-end CPU utilization control problem for a common class of distributed real-time embedded systems with end-to-end tasks. We formulate the utilization control problem as a constrained multi-input-multi-output control model. We then present a centralized control algorithm for small or medium size systems, and a decentralized control algorithm for large-scale systems. Both algorithms are designed systematically based on model predictive control theory to dynamically enforce desired utilizations. We also introduce novel task allocation algorithms to ensure that the system is controllable and feasible for utilization control. Furthermore, we integrate our control algorithms with fault-tolerance mechanisms as an eïŹ€ective way to develop robust middleware systems, which maintain both system reliability and real-time performance even when the system is in face of malicious external resource contentions and permanent processor failures. Both control analysis and extensive experiments demonstrate that our control algorithms and middleware systems can achieve robust utilization guarantees. The control framework has also been successfully applied to other distributed real-time applications such as end-to-end delay control in real-time image transmission. Our results show that adaptive QoS control middleware is a step towards self-managing, self-healing and self-tuning distributed computing platform

    Ubiquitous energy storage

    Get PDF
    This paper presents a vision of a future power system with "ubiquitous energy storage", where storage would be utilized at all levels of the electricity system. The growing requirement for storage is reviewed, driven by the expansion of distributed generation. The capabilities and existing applications of various storage technologies are presented, providing a useful review of the state of the art. Energy storage will have to be integrated with the power system and there are various ways in which this may be achieved. Some of these options are discussed, as are commercial and regulatory issues. In two case studies, the costs and benefits of some storage options are assessed. It is concluded that electrical storage is not cost effective but that thermal storage offers attractive opportunities

    Reusable rocket engine intelligent control system framework design, phase 2

    Get PDF
    Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Controllability Canonical Forms of Linear Ensemble Systems

    Full text link
    Ensemble control, an emerging research field focusing on the study of large populations of dynamical systems, has demonstrated great potential in numerous scientific and practical applications. Striking examples include pulse design for exciting spin ensembles in quantum physics, neurostimulation for relieving neurological disorder symptoms, and path planning for steering robot swarms. However, the control targets in such applications are generally large-scale complex and severely underactuated ensemble systems, research into which stretches the capability of techniques in classical control and dynamical systems theory to the very limit. This paper then devotes to advancing our knowledge about controllability of linear ensemble systems by integrating tools in modern algebra into the technique of separating points developed in our recent work. In particular, we give an algebraic interpretation of the dynamics of linear systems in terms of actions of polynomials on vector spaces, and this leads to the development of the functional canonical form of matrix-valued functions, which can also be viewed as the generalization of the rational canonical form of matrices in linear algebra. Then, leveraging the technique of separating points, we achieve a necessary and sufficient characterization of uniform ensemble controllability for time-invariant linear ensemble systems as the ensemble controllability canonical form, in which the system and control matrices are in the functional canonical and block diagonal form, respectively. This work successfully launches a new research scheme by adopting and tailoring finite-dimensional methods to tackle control problems involving infinite-dimensional ensemble systems, and lays a solid foundation for a more inclusive ensemble control theory targeting a much broader spectrum of control and learning problems in both scientific research and practice

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented
    • 

    corecore