2,690 research outputs found

    An Algorithm for Computing the Limit Points of the Quasi-component of a Regular Chain

    Full text link
    For a regular chain RR, we propose an algorithm which computes the (non-trivial) limit points of the quasi-component of RR, that is, the set W(R)ˉW(R)\bar{W(R)} \setminus W(R). Our procedure relies on Puiseux series expansions and does not require to compute a system of generators of the saturated ideal of RR. We focus on the case where this saturated ideal has dimension one and we discuss extensions of this work in higher dimensions. We provide experimental results illustrating the benefits of our algorithms

    The algebra of the box spline

    Full text link
    In this paper we want to revisit results of Dahmen and Micchelli on box-splines which we reinterpret and make more precise. We compare these ideas with the work of Brion, Szenes, Vergne and others on polytopes and partition functions.Comment: 69 page

    Algorithms for Bohemian Matrices

    Get PDF
    This thesis develops several algorithms for working with matrices whose entries are multivariate polynomials in a set of parameters. Such parametric linear systems often appear in biology and engineering applications where the parameters represent physical properties of the system. Some computations on parametric matrices, such as the rank and Jordan canonical form, are discontinuous in the parameter values. Understanding where these discontinuities occur provides a greater understanding of the underlying system. Algorithms for computing a complete case discussion of the rank, Zigzag form, and the Jordan canonical form of parametric matrices are presented. These algorithms use the theory of regular chains to provide a unified framework allowing for algebraic or semi-algebraic constraints on the parameters. Corresponding implementations for each algorithm in the Maple computer algebra system are provided. In some applications, all entries may be parameters whose values are limited to finite sets of integers. Such matrices appear in applications such as graph theory where matrix entries are limited to the sets {0, 1}, or {-1, 0, 1}. These types of parametric matrices can be explored using different techniques and exhibit many interesting properties. A family of Bohemian matrices is a set of low to moderate dimension matrices where the entries are independently sampled from a finite set of integers of bounded height. Properties of Bohemian matrices are studied including the distributions of their eigenvalues, symmetries, and integer sequences arising from properties of the families. These sequences provide connections to other areas of mathematics and have been archived in the Characteristic Polynomial Database. A study of two families of structured matrices: upper Hessenberg and upper Hessenberg Toeplitz, and properties of their characteristic polynomials are presented

    Computing Limit Points of Quasi-components of Regular Chains and its Applications

    Get PDF
    Computing limit is a fundamental task in mathematics and different mathematical concepts are defined in terms of limit computations. Among these mathematical concepts, we are interested in three different types of limit computations: first, computing the limit points of solutions of polynomial systems represented by regular chains, second, computing tangent cones of space curves at their singular points which can be viewed as computing limit of secant lines, and third, computing the limit of real multivariate rational functions. For computing the limit of solutions of polynomial systems represented by regular chains, we present two different methods based on Puiseux series expansions and linear changes of coordinates. The first method, which is based on Puiseux series expansions, addresses the problem of computing real and complex limit points corresponding to regular chains of dimension one. The second method studies regular chains under changes of coordinates. It especially computes the limit points corresponding to regular chains of dimension higher than one for some cases. we consider strategies where these changes of coordinates can be either generic or guided by the input. For computing the Puiseux parametrizations corresponding to regular chains of dimension one, we rely on extended Hensel construction (EHC). The Extended Hensel Construction is a procedure which, for an input bivariate polynomial with complex coefficients, can serve the same purpose as the Newton-Puiseux algorithm, and, for the multivariate case, can be seen as an effective variant of Jung-Abhyankar Theorem. We show that the EHC requires only linear algebra and univariate polynomial arithmetic. We deduce complexity estimates and report on a software implementation together with experimental results. We also outline a method for computing the tangent cone of a space curve at any of its points. We rely on the theory of regular chains and Puiseux series expansions. Our approach is novel in that it explicitly constructs the tangent cone at arbitrary and possibly irrational points without using a Standard basis. We also present an algorithm for determining the existence of the limit of a real multivariate rational function q at a given point which is an isolated zero of the denominator of q. When the limit exists, the algorithm computes it, without making any assumption on the number of variables. A process, which extends the work of Cadavid, Molina and V´elez, reduces the multivariate setting to computing limits of bivariate rational functions. By using regular chain theory and triangular decomposition of semi-algebraic systems, we avoid the computation of singular loci and the decomposition of algebraic sets into irreducible components

    Exact Algorithms for Solving Stochastic Games

    Full text link
    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games
    corecore