1,715 research outputs found

    On Constructor Rewrite Systems and the Lambda Calculus

    Full text link
    We prove that orthogonal constructor term rewrite systems and lambda-calculus with weak (i.e., no reduction is allowed under the scope of a lambda-abstraction) call-by-value reduction can simulate each other with a linear overhead. In particular, weak call-by- value beta-reduction can be simulated by an orthogonal constructor term rewrite system in the same number of reduction steps. Conversely, each reduction in a term rewrite system can be simulated by a constant number of beta-reduction steps. This is relevant to implicit computational complexity, because the number of beta steps to normal form is polynomially related to the actual cost (that is, as performed on a Turing machine) of normalization, under weak call-by-value reduction. Orthogonal constructor term rewrite systems and lambda-calculus are thus both polynomially related to Turing machines, taking as notion of cost their natural parameters.Comment: 27 pages. arXiv admin note: substantial text overlap with arXiv:0904.412

    Computing overlappings by unification in the deterministic lambda calculus LR with letrec, case, constructors, seq and variable chains

    Get PDF
    Correctness of program transformations in extended lambda calculi with a contextual semantics is usually based on reasoning about the operational semantics which is a rewrite semantics. A successful approach to proving correctness is the combination of a context lemma with the computation of overlaps between program transformations and the reduction rules.The method is similar to the computation of critical pairs for the completion of term rewriting systems. We describe an effective unification algorithm to determine all overlaps of transformations with reduction rules for the lambda calculus LR which comprises a recursive let-expressions, constructor applications, case expressions and a seq construct for strict evaluation. The unification algorithm employs many-sorted terms, the equational theory of left-commutativity modeling multi-sets, context variables of different kinds and a mechanism for compactly representing binding chains in recursive let-expressions. As a result the algorithm computes a finite set of overlappings for the reduction rules of the calculus LR that serve as a starting point to the automatization of the analysis of program transformations

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Strong normalisation for applied lambda calculi

    Full text link
    We consider the untyped lambda calculus with constructors and recursively defined constants. We construct a domain-theoretic model such that any term not denoting bottom is strongly normalising provided all its `stratified approximations' are. From this we derive a general normalisation theorem for applied typed lambda-calculi: If all constants have a total value, then all typeable terms are strongly normalising. We apply this result to extensions of G\"odel's system T and system F extended by various forms of bar recursion for which strong normalisation was hitherto unknown.Comment: 14 pages, paper acceptet at electronic journal LMC

    Inductive types in the Calculus of Algebraic Constructions

    Get PDF
    In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higher-order rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with non-strictly positive types and inductive-recursive types together with non-free constructors and pattern-matching on defined symbols.Comment: Journal version of TLCA'0

    Initial Semantics for Reduction Rules

    Get PDF
    We give an algebraic characterization of the syntax and operational semantics of a class of simply-typed languages, such as the language PCF: we characterize simply-typed syntax with variable binding and equipped with reduction rules via a universal property, namely as the initial object of some category of models. For this purpose, we employ techniques developed in two previous works: in the first work we model syntactic translations between languages over different sets of types as initial morphisms in a category of models. In the second work we characterize untyped syntax with reduction rules as initial object in a category of models. In the present work, we combine the techniques used earlier in order to characterize simply-typed syntax with reduction rules as initial object in a category. The universal property yields an operator which allows to specify translations---that are semantically faithful by construction---between languages over possibly different sets of types. As an example, we upgrade a translation from PCF to the untyped lambda calculus, given in previous work, to account for reduction in the source and target. Specifically, we specify a reduction semantics in the source and target language through suitable rules. By equipping the untyped lambda calculus with the structure of a model of PCF, initiality yields a translation from PCF to the lambda calculus, that is faithful with respect to the reduction semantics specified by the rules. This paper is an extended version of an article published in the proceedings of WoLLIC 2012.Comment: Extended version of arXiv:1206.4547, proves a variant of a result of PhD thesis arXiv:1206.455

    Consistency and Completeness of Rewriting in the Calculus of Constructions

    Full text link
    Adding rewriting to a proof assistant based on the Curry-Howard isomorphism, such as Coq, may greatly improve usability of the tool. Unfortunately adding an arbitrary set of rewrite rules may render the underlying formal system undecidable and inconsistent. While ways to ensure termination and confluence, and hence decidability of type-checking, have already been studied to some extent, logical consistency has got little attention so far. In this paper we show that consistency is a consequence of canonicity, which in turn follows from the assumption that all functions defined by rewrite rules are complete. We provide a sound and terminating, but necessarily incomplete algorithm to verify this property. The algorithm accepts all definitions that follow dependent pattern matching schemes presented by Coquand and studied by McBride in his PhD thesis. It also accepts many definitions by rewriting, containing rules which depart from standard pattern matching.Comment: 20 page
    corecore