676 research outputs found

    Leveraging Interactivity and MPI for Environmental Applications

    Get PDF
    This paper describes two different approaches to exploiting interactivity and MPI support available in the Interactive European Grid project.The first application is an air pollution simulation using Lagrangian trajectory model to simulate the spread of pollutant particles released into the atmosphere. The performance of the sequential implementation of the application was not satisfactory, therefore a parallelization was planned. The MPI programming model was used because of some previous experience with it and its support in the grid infrastructure to be used. Then the interactivity enabling the user to receive visualizations of simulation steps and to exercise control over the application running in the grid was added. The user interface for interacting with the application was implemented as a plug-in into the Migrating Desktop user interface client platform. The other application is an interactive workflow management system, which is a modification of a previously developed system for management of applications composed of web and grid services. It allows users to manage more complex jobs, composed of several program executions, in an interactive and comfortable manner. The system uses the interactive channel of the project to forward commands from a GUI to the on-site workflow manager, and to control the job during execution. This tool is able to visualize the inner workflow of the application. User has complete in-execution control over the job, can see its partial results, and can even alter it while it is running. This allows not only to accommodate the job workflow to the data it produces, extend or shorten it, but also to interactively debug and tune the job

    Doctor of Philosophy

    Get PDF
    dissertationRay tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals. Ray tracing within existing tools also provides enhanced rendering options over current implementations, giving users additional insight from better depth cues while also enabling publication-quality rendering and new models of visualization such as replicating photographic visualization techniques
    • …
    corecore