126 research outputs found

    On Constructing the Minimum Orthogonal Convex Polygon in 2-D Faulty Meshes

    Get PDF

    On quantifying fault patterns of the mesh interconnect networks

    Get PDF
    One of the key issues in the design of Multiprocessors System-on-Chip (MP-SoCs), multicomputers, and peerto- peer networks is the development of an efficient communication network to provide high throughput and low latency and its ability to survive beyond the failure of individual components. Generally, the faulty components may be coalesced into fault regions, which are classified into convex and concave shapes. In this paper, we propose a mathematical solution for counting the number of common fault patterns in a 2-D mesh interconnect network including both convex (|-shape, | |-shape, ĂƒÂœ-shape) and concave (L-shape, Ushape, T-shape, +-shape, H-shape) regions. The results presented in this paper which have been validated through simulation experiments can play a key role when studying, particularly, the performance analysis of fault-tolerant routing algorithms and measure of a network fault-tolerance expressed as the probability of a disconnection

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    3-D surface modelling of the human body and 3-D surface anthropometry

    Get PDF
    This thesis investigates three-dimensional (3-D) surface modelling of the human body and 3-D surface anthropometry. These are two separate, but closely related, areas. 3-D surface modelling is an essential technology for representing and describing the surface shape of an object on a computer. 3-D surface modelling of the human body has wide applications in engineering design, work space simulation, the clothing industry, medicine, biomechanics and animation. These applications require increasingly realistic surface models of the human body. 3-D surface anthropometry is a new interdisciplinary subject. It is defined in this thesis as the art, science, and technology of acquiring, modelling and interrogating 3-D surface data of the human body. [Continues.

    Shape Retrieval Methods for Architectural 3D Models

    Get PDF
    This thesis introduces new methods for content-based retrieval of architecture-related 3D models. We thereby consider two different overall types of architectural 3D models. The first type consists of context objects that are used for detailed design and decoration of 3D building model drafts. This includes e.g. furnishing for interior design or barriers and fences for forming the exterior environment. The second type consists of actual building models. To enable efficient content-based retrieval for both model types that is tailored to the user requirements of the architectural domain, type-specific algorithms must be developed. On the one hand, context objects like furnishing that provide similar functions (e.g. seating furniture) often share a similar shape. Nevertheless they might be considered to belong to different object classes from an architectural point of view (e.g. armchair, elbow chair, swivel chair). The differentiation is due to small geometric details and is sometimes only obvious to an expert from the domain. Building models on the other hand are often distinguished according to the underlying floor- and room plans. Topological floor plan properties for example serve as a starting point for telling apart residential and commercial buildings. The first contribution of this thesis is a new meta descriptor for 3D retrieval that combines different types of local shape descriptors using a supervised learning approach. The approach enables the differentiation of object classes according to small geometric details and at the same time integrates expert knowledge from the field of architecture. We evaluate our approach using a database containing arbitrary 3D models as well as on one that only consists of models from the architectural domain. We then further extend our approach by adding a sophisticated shape descriptor localization strategy. Additionally, we exploit knowledge about the spatial relationship of object components to further enhance the retrieval performance. In the second part of the thesis we introduce attributed room connectivity graphs (RCGs) as a means to characterize a 3D building model according to the structure of its underlying floor plans. We first describe how RCGs are inferred from a given building model and discuss how substructures of this graph can be queried efficiently. We then introduce a new descriptor denoted as Bag-of-Attributed-Subgraphs that transforms attributed graphs into a vector-based representation using subgraph embeddings. We finally evaluate the retrieval performance of this new method on a database consisting of building models with different floor plan types. All methods presented in this thesis are aimed at an as automated as possible workflow for indexing and retrieval such that only minimum human interaction is required. Accordingly, only polygon soups are required as inputs which do not need to be manually repaired or structured. Human effort is only needed for offline groundtruth generation to enable supervised learning and for providing information about the orientation of building models and the unit of measurement used for modeling

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Control for Localization and Visibility Maintenance of an Independent Agent using Robotic Teams

    Get PDF
    Given a non-cooperative agent, we seek to formulate a control strategy to enable a team of robots to localize and track the agent in a complex but known environment while maintaining a continuously optimized line-of-sight communication chain to a fixed base station. We focus on two aspects of the problem. First, we investigate the estimation of the agent\u27s location by using nonlinear sensing modalities, in particular that of range-only sensing, and formulate a control strategy based on improving this estimation using one or more robots working to independently gather information. Second, we develop methods to plan and sequence robot deployments that will establish and maintain line-of-sight chains for communication between the independent agent and the fixed base station using a minimum number of robots. These methods will lead to feedback control laws that can realize this plan and ensure proper navigation and collision avoidance

    Computations of Delaunay and Higher Order Triangulations, with Applications to Splines

    Get PDF
    Digital data that consist of discrete points are frequently captured and processed by scientific and engineering applications. Due to the rapid advance of new data gathering technologies, data set sizes are increasing, and the data distributions are becoming more irregular. These trends call for new computational tools that are both efficient enough to handle large data sets and flexible enough to accommodate irregularity. A mathematical foundation that is well-suited for developing such tools is triangulation, which can be defined for discrete point sets with little assumption about their distribution. The potential benefits from using triangulation are not fully exploited. The challenges fundamentally stem from the complexity of the triangulation structure, which generally takes more space to represent than the input points. This complexity makes developing a triangulation program a delicate task, particularly when it is important that the program runs fast and robustly over large data. This thesis addresses these challenges in two parts. The first part concentrates on techniques designed for efficiently and robustly computing Delaunay triangulations of three kinds of practical data: the terrain data from LIDAR sensors commonly found in GIS, the atom coordinate data used for biological applications, and the time varying volume data generated from from scientific simulations. The second part addresses the problem of defining spline spaces over triangulations in two dimensions. It does so by generalizing Delaunay configurations, defined as follows. For a given point set P in two dimensions, a Delaunay configuration is a pair of subsets (T, I) from P, where T, called the boundary set, is a triplet and I, called the interior set, is the set of points that fall in the circumcircle through T. The size of the interior set is the degree of the configuration. As recently discovered by Neamtu (2004), for a chosen point set, the set of all degree k Delaunay configurations can be associated with a set of degree k plus 1 splines that form the basis of a spline space. In particular, for the trivial case of k equals 0, the spline space coincides with the PL interpolation functions over the Delaunay triangulation. Neamtu’s definition of the spline space relies only on a few structural properties of the Delaunay configurations. This raises the question whether there exist other sets of configurations with identical structural properties. If there are, then these sets of configurations—let us call them generalized configurations from hereon—can be substituted for Delaunay configurations in Neamtu’s definition of spline space thereby yielding a family of splines over the same point set
    • 

    corecore