346 research outputs found

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Barriers for Rank Methods in Arithmetic Complexity

    Get PDF
    Arithmetic complexity, the study of the cost of computing polynomials via additions and multiplications, is considered (for many good reasons) simpler to understand than Boolean complexity, namely computing Boolean functions via logical gates. And indeed, we seem to have significantly more lower bound techniques and results in arithmetic complexity than in Boolean complexity. Despite many successes and rapid progress, however, foundational challenges, like proving super-polynomial lower bounds on circuit or formula size for explicit polynomials, or super-linear lower bounds on explicit 3-dimensional tensors, remain elusive. At the same time (and possibly for similar reasons), we have plenty more excuses, in the form of "barrier results" for failing to prove basic lower bounds in Boolean complexity than in arithmetic complexity. Efforts to find barriers to arithmetic lower bound techniques seem harder, and despite some attempts we have no excuses of similar quality for these failures in arithmetic complexity. This paper aims to add to this study. In this paper we address rank methods, which were long recognized as encompassing and abstracting almost all known arithmetic lower bounds to-date, including the most recent impressive successes. Rank methods (under the name of flattenings) are also in wide use in algebraic geometry for proving tensor rank and symmetric tensor rank lower bounds. Our main results are barriers to these methods. In particular, 1. Rank methods cannot prove better than (2^d)*n^(d/2) lower bound on the tensor rank of any d-dimensional tensor of side n. (In particular, they cannot prove super-linear, indeed even >8n tensor rank lower bounds for any 3-dimensional tensors.) 2. Rank methods cannot prove (d+1)n^(d/2) on the Waring rank of any n-variate polynomial of degree d. (In particular, they cannot prove such lower bounds on stronger models, including depth-3 circuits.) The proofs of these bounds use simple linear-algebraic arguments, leveraging connections between the symbolic rank of matrix polynomials and the usual rank of their evaluations. These techniques can perhaps be extended to barriers for other arithmetic models on which progress has halted. To see how these barrier results directly inform the state-of-art in arithmetic complexity we note the following. First, the bounds above nearly match the best explicit bounds we know for these models, hence offer an explanations why the rank methods got stuck there. Second, the bounds above are a far cry (quadratically away) from the true complexity (e.g. of random polynomials) in these models, which if achieved (by any methods), are known to imply super-polynomial formula lower bounds. We also explain the relation of our barrier results to other attempts, and in particular how they significantly differ from the recent attempts to find analogues of "natural proofs" for arithmetic complexity. Finally, we discuss the few arithmetic lower bound approaches which fall outside rank methods, and some natural directions our barriers suggest

    Truth Table Minimization of Computational Models

    Full text link
    Complexity theory offers a variety of concise computational models for computing boolean functions - branching programs, circuits, decision trees and ordered binary decision diagrams to name a few. A natural question that arises in this context with respect to any such model is this: Given a function f:{0,1}^n \to {0,1}, can we compute the optimal complexity of computing f in the computational model in question? (according to some desirable measure). A critical issue regarding this question is how exactly is f given, since a more elaborate description of f allows the algorithm to use more computational resources. Among the possible representations are black-box access to f (such as in computational learning theory), a representation of f in the desired computational model or a representation of f in some other model. One might conjecture that if f is given as its complete truth table (i.e., a list of f's values on each of its 2^n possible inputs), the most elaborate description conceivable, then any computational model can be efficiently computed, since the algorithm computing it can run poly(2^n) time. Several recent studies show that this is far from the truth - some models have efficient and simple algorithms that yield the desired result, others are believed to be hard, and for some models this problem remains open. In this thesis we will discuss the computational complexity of this question regarding several common types of computational models. We shall present several new hardness results and efficient algorithms, as well as new proofs and extensions for known theorems, for variants of decision trees, formulas and branching programs

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness and randomness extraction. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    A Superpolynomial Lower Bound on the Size of Uniform Non-constant-depth Threshold Circuits for the Permanent

    Get PDF
    We show that the permanent cannot be computed by DLOGTIME-uniform threshold or arithmetic circuits of depth o(log log n) and polynomial size.Comment: 11 page

    Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

    Get PDF

    Algorithms and Lower Bounds in Circuit Complexity

    Get PDF
    Computational complexity theory aims to understand what problems can be efficiently solved by computation. This thesis studies computational complexity in the model of Boolean circuits. Boolean circuits provide a basic mathematical model for computation and play a central role in complexity theory, with important applications in separations of complexity classes, algorithm design, and pseudorandom constructions. In this thesis, we investigate various types of circuit models such as threshold circuits, Boolean formulas, and their extensions, focusing on obtaining complexity-theoretic lower bounds and algorithmic upper bounds for these circuits. (1) Algorithms and lower bounds for generalized threshold circuits: We extend the study of linear threshold circuits, circuits with gates computing linear threshold functions, to the more powerful model of polynomial threshold circuits where the gates can compute polynomial threshold functions. We obtain hardness and meta-algorithmic results for this circuit model, including strong average-case lower bounds, satisfiability algorithms, and derandomization algorithms for constant-depth polynomial threshold circuits with super-linear wire complexity. (2) Algorithms and lower bounds for enhanced formulas: We investigate the model of Boolean formulas whose leaf gates can compute complex functions. In particular, we study De Morgan formulas whose leaf gates are functions with "low communication complexity". Such gates can capture a broad class of functions including symmetric functions and polynomial threshold functions. We obtain new and improved results in terms of lower bounds and meta-algorithms (satisfiability, derandomization, and learning) for such enhanced formulas. (3) Circuit lower bounds for MCSP: We study circuit lower bounds for the Minimum Circuit Size Problem (MCSP), the fundamental problem of deciding whether a given function (in the form of a truth table) can be computed by small circuits. We get new and improved lower bounds for MCSP that nearly match the best-known lower bounds against several well-studied circuit models such as Boolean formulas and constant-depth circuits

    Algebraic Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. In some of the most exciting recent progress in Computational Complexity the algebraic theme still plays a central role. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Also the areas of derandomization and coding theory have experimented important advances. The seminar aimed to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and the goal of the seminar was to play an important role in educating a diverse community about the latest new techniques
    • …
    corecore