3,799 research outputs found

    Mixtures of g-priors in Generalized Linear Models

    Full text link
    Mixtures of Zellner's g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we unify mixtures of g-priors in GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1 + g), which encompasses as special cases several mixtures of g-priors in the literature, such as the hyper-g, Beta-prime, truncated Gamma, incomplete inverse-Gamma, benchmark, robust, hyper-g/n, and intrinsic priors. Through an integrated Laplace approximation, the posterior distribution of 1/(1 + g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically, leading to "Compound Hypergeometric Information Criteria" for model selection. We discuss the local geometric properties of the g-prior in GLMs and show how the desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, intrinsic consistency, and measurement invariance may be used to justify the prior and specific choices of the hyper parameters. We illustrate inference using these priors and contrast them to other approaches via simulation and real data examples. The methodology is implemented in the R package BAS and freely available on CRAN

    Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression

    Full text link
    In this work we perform a meta-analysis of neuroimaging data, consisting of locations of peak activations identified in 162 separate studies on emotion. Neuroimaging meta-analyses are typically performed using kernel-based methods. However, these methods require the width of the kernel to be set a priori and to be constant across the brain. To address these issues, we propose a fully Bayesian nonparametric binary regression method to perform neuroimaging meta-analyses. In our method, each location (or voxel) has a probability of being a peak activation, and the corresponding probability function is based on a spatially adaptive Gaussian Markov random field (GMRF). We also include parameters in the model to robustify the procedure against miscoding of the voxel response. Posterior inference is implemented using efficient MCMC algorithms extended from those introduced in Holmes and Held [Bayesian Anal. 1 (2006) 145--168]. Our method allows the probability function to be locally adaptive with respect to the covariates, that is, to be smooth in one region of the covariate space and wiggly or even discontinuous in another. Posterior miscoding probabilities for each of the identified voxels can also be obtained, identifying voxels that may have been falsely classified as being activated. Simulation studies and application to the emotion neuroimaging data indicate that our method is superior to standard kernel-based methods.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS523 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Testing hypotheses via a mixture estimation model

    Full text link
    We consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model comparison. Our alternative to the traditional construction of posterior probabilities that a given hypothesis is true or that the data originates from a specific model is to consider the models under comparison as components of a mixture model. We therefore replace the original testing problem with an estimation one that focus on the probability weight of a given model within a mixture model. We analyze the sensitivity on the resulting posterior distribution on the weights of various prior modeling on the weights. We stress that a major appeal in using this novel perspective is that generic improper priors are acceptable, while not putting convergence in jeopardy. Among other features, this allows for a resolution of the Lindley-Jeffreys paradox. When using a reference Beta B(a,a) prior on the mixture weights, we note that the sensitivity of the posterior estimations of the weights to the choice of a vanishes with the sample size increasing and avocate the default choice a=0.5, derived from Rousseau and Mengersen (2011). Another feature of this easily implemented alternative to the classical Bayesian solution is that the speeds of convergence of the posterior mean of the weight and of the corresponding posterior probability are quite similar.Comment: 25 pages, 6 figures, 2 table
    corecore