11,883 research outputs found

    On the geometric mean method for incomplete pairwise comparisons

    Full text link
    When creating the ranking based on the pairwise comparisons very often, we face difficulties in completing all the results of direct comparisons. In this case, the solution is to use the ranking method based on the incomplete PC matrix. The article presents the extension of the well known geometric mean method for incomplete PC matrices. The description of the methods is accompanied by theoretical considerations showing the existence of the solution and the optimality of the proposed approach.Comment: 15 page

    Notes on the existence of solutions in the pairwise comparisons method using the Heuristic Rating Estimation approach

    Full text link
    Pairwise comparisons are a well-known method for modelling of the subjective preferences of a decision maker. A popular implementation of the method is based on solving an eigenvalue problem for M - the matrix of pairwise comparisons. This does not take into account the actual values of preference. The Heuristic Rating Estimation (HRE) approach is a modification of this method in which allows modelling of the reference values. To determine the relative order of preferences is to solve a certain linear equation system defined by the matrix A and the constant term vector b (both derived from M). The article explores the properties of these equation systems. In particular, it is proven that for some small data inconsistency the A matrix is an M-matrix, hence the equation proposed by the HRE approach has a unique strictly positive solution.Comment: 8 page

    A framework for the selection of the right nuclear power plant

    Get PDF
    Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404

    Biodiesel from microalgae : the use of multi-criteria decision analysis for strain selection

    Get PDF
    Microalgae strain selection is a vital step in the production of biodiesel from microalgae. In this study, Multi-Criteria Decision Analysis (MCDA) methodologies are adopted to resolve this problem. The aim of this study is to identify the best microalgae strain for viable biodiesel production. The microalgae strains considered here are Heynigia sp., Scenedesmus sp., Niracticinium sp., Chlorella vulgaris, Chlorella sorokiniana and Auxenochlorella protothecoides. The five MCDA methods used to evaluate different strains of microalgae are Analytic Hierarchy Process (AHP), Weighted Sum Method (WSM), Weighted Product Method (WPM), Discrete Compromise Programming (DCP) and Technique for the Order of Preference to the Ideal Solution (TOPSIS). Pairwise comparison matrices are used to determine the weights of the evaluation criteria and it is observed that the most important evaluation criteria are lipid content and growth rate. From the results, Scenedesmus sp. is selected as the best microalgae strain among the six alternatives due to its high lipid content and relatively fast growth rate. The AHP is the most comprehensive of the five MCDA methods because it considers the importance of each criterion and inconsistencies in the rankings are verified. The implementation of the MCDA methods and the results from this study provide an idea of how MCDA can be applied in microalgae strain selection
    • …
    corecore