3,835 research outputs found

    The Structure of a Graph Inverse Semigroup

    Full text link
    Given any directed graph E one can construct a graph inverse semigroup G(E), where, roughly speaking, elements correspond to paths in the graph. In this paper we study the semigroup-theoretic structure of G(E). Specifically, we describe the non-Rees congruences on G(E), show that the quotient of G(E) by any Rees congruence is another graph inverse semigroup, and classify the G(E) that have only Rees congruences. We also find the minimum possible degree of a faithful representation by partial transformations of any countable G(E), and we show that a homomorphism of directed graphs can be extended to a homomorphism (that preserves zero) of the corresponding graph inverse semigroups if and only if it is injective.Comment: 19 pages; corrected errors, improved organization, strengthened a result (Theorem 20), added reference

    Congruence Lattices of Certain Finite Algebras with Three Commutative Binary Operations

    Full text link
    A partial algebra construction of Gr\"atzer and Schmidt from "Characterizations of congruence lattices of abstract algebras" (Acta Sci. Math. (Szeged) 24 (1963), 34-59) is adapted to provide an alternative proof to a well-known fact that every finite distributive lattice is representable, seen as a special case of the Finite Lattice Representation Problem. The construction of this proof brings together Birkhoff's representation theorem for finite distributive lattices, an emphasis on boolean lattices when representing finite lattices, and a perspective based on inequalities of partially ordered sets. It may be possible to generalize the techniques used in this approach. Other than the aforementioned representation theorem only elementary tools are used for the two theorems of this note. In particular there is no reliance on group theoretical concepts or techniques (see P\'eter P\'al P\'alfy and Pavel Pud\'lak), or on well-known methods, used to show certain finite lattice to be representable (see William J. DeMeo), such as the closure method

    Lattice congruences of the weak order

    Full text link
    We study the congruence lattice of the poset of regions of a hyperplane arrangement, with particular emphasis on the weak order on a finite Coxeter group. Our starting point is a theorem from a previous paper which gives a geometric description of the poset of join-irreducibles of the congruence lattice of the poset of regions in terms of certain polyhedral decompositions of the hyperplanes. For a finite Coxeter system (W,S) and a subset K of S, let \eta_K:w \mapsto w_K be the projection onto the parabolic subgroup W_K. We show that the fibers of \eta_K constitute the smallest lattice congruence with 1\equiv s for every s\in(S-K). We give an algorithm for determining the congruence lattice of the weak order for any finite Coxeter group and for a finite Coxeter group of type A or B we define a directed graph on subsets or signed subsets such that the transitive closure of the directed graph is the poset of join-irreducibles of the congruence lattice of the weak order.Comment: 26 pages, 4 figure

    Congruences for Taylor expansions of quantum modular forms

    Full text link
    Recently, a beautiful paper of Andrews and Sellers has established linear congruences for the Fishburn numbers modulo an infinite set of primes. Since then, a number of authors have proven refined results, for example, extending all of these congruences to arbitrary powers of the primes involved. Here, we take a different perspective and explain the general theory of such congruences in the context of an important class of quantum modular forms. As one example, we obtain an infinite series of combinatorial sequences connected to the "half-derivatives" of the Andrews-Gordon functions and with Kashaev's invariant on (2m+1,2)(2m+1,2) torus knots, and we prove conditions under which the sequences satisfy linear congruences modulo at least 50%50\% of primes of primes

    Non-existence of Ramanujan congruences in modular forms of level four

    Full text link
    Ramanujan famously found congruences for the partition function like p(5n+4) = 0 modulo 5. We provide a method to find all simple congruences of this type in the coefficients of the inverse of a modular form on Gamma_{1}(4) which is non-vanishing on the upper half plane. This is applied to answer open questions about the (non)-existence of congruences in the generating functions for overpartitions, crank differences, and 2-colored F-partitions.Comment: 19 page
    corecore