313 research outputs found

    Strongly Essential Coalitions and the Nucleolus of Peer Group Games

    Get PDF
    Most of the known efficient algorithms designed to compute the nucleolus for special classes of balanced games are based on two facts: (i) in any balanced game, the coalitions which actually determine the nucleolus are essential; and (ii) all essential coalitions in any of the games in the class belong to a prespeci ed collection of size polynomial in the number of players.We consider a subclass of essential coalitions, called strongly essential coalitions, and show that in any game, the collection of strongly essential coalitions contains all the coalitions which actually determine the core, and in case the core is not empty, the nucleolus and the kernelcore.As an application, we consider peer group games, and show that they admit at most 2n - 1 strongly essential coalitions, whereas the number of essential coalitions could be as much as 2n-1. We propose an algorithm that computes the nucleolus of an n-player peer group game in O(n2) time directly from the data of the underlying peer group situation.game theory;algorithm;cooperative games;kernel estimation;peer games

    The nucleolus of directed acyclic graph games

    Get PDF

    The nucleolus and kernel of veto-rich transferable utility games

    Get PDF
    Game Theory

    The Least-core and Nucleolus of Path Cooperative Games

    Full text link
    Cooperative games provide an appropriate framework for fair and stable profit distribution in multiagent systems. In this paper, we study the algorithmic issues on path cooperative games that arise from the situations where some commodity flows through a network. In these games, a coalition of edges or vertices is successful if it enables a path from the source to the sink in the network, and lose otherwise. Based on dual theory of linear programming and the relationship with flow games, we provide the characterizations on the CS-core, least-core and nucleolus of path cooperative games. Furthermore, we show that the least-core and nucleolus are polynomially solvable for path cooperative games defined on both directed and undirected network

    Operations Research Games: A Survey

    Get PDF
    This paper surveys the research area of cooperative games associated with several types of operations research problems in which various decision makers (players) are involved.Cooperating players not only face a joint optimisation problem in trying, e.g., to minimise total joint costs, but also face an additional allocation problem in how to distribute these joint costs back to the individual players.This interplay between optimisation and allocation is the main subject of the area of operations research games.It is surveyed on the basis of a distinction between the nature of the underlying optimisation problem: connection, routing, scheduling, production and inventory.cooperative games;operational research

    Tree-connected Peer Group Situations and Peer Group Games

    Get PDF
    A class of cooperative games is introduced which arises from situations in which a set of agents is hierarchically structured and where potential individual economic abilities interfere with the behavioristic rules induced by the organization structure.These games form a cone generated by a specific class of unanimity games, namely those based on coalitions called peer groups. Different economic situations like auctions, communication situations, sequencing situations and flow situations are related to peer group games.For peer group games classical solution concepts have nice properties.auctions;cooperative games;peer groups

    Cost allocation in connection and conflict problems on networks: a cooperative game theoretic approach

    Get PDF
    This thesis examines settings where multiple decision makers with conflicting interests benefit from cooperation in joint combinatorial optimisation problems. It draws on cooperative game theory, polyhedral theory and graph theory to address cost sharing in joint single-source shortest path problems and joint weighted minimum colouring problems. The primary focus of the thesis are problems where each agent corresponds to a vertex of an undirected complete graph, in which a special vertex represents the common supplier. The joint combinatorial optimisation problem consists of determining the shortest paths from the supplier to all other vertices in the graph. The optimal solution is a shortest path tree of the graph and the aim is to allocate the cost of this shortest path tree amongst the agents. The thesis defines shortest path tree problems, proposes allocation rules and analyses the properties of these allocation rules. It furthermore introduces shortest path tree games and studies the properties of these games. Various core allocations for shortest path tree games are introduced and polyhedral properties of the core are studied. Moreover, computational results on finding the core and the nucleolus of shortest path tree games for the application of cost allocation in Wireless Multihop Networks are presented. The secondary focus of the thesis are problems where each agent is interested in having access to a number of facilities but can be in conflict with other agents. If two agents are in conflict, then they should have access to disjoint sets of facilities. The aim is to allocate the cost of the minimum number of facilities required by the agents amongst them. The thesis models these cost allocation problems as a class of cooperative games called weighted minimum colouring games, and characterises total balancedness and submodularity of this class of games using the properties of the underlying graph
    corecore