1,080 research outputs found

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    A method to generate a modular ifcOWL ontology

    Get PDF
    Building Information Modeling (BIM) and Semantic Web technologies are becoming more and more popular in the Architecture Engineering Construction (AEC) and Facilities Management (FM) industry to support information management, information exchange and data interoperability. One of the key integration gateways between BIM and Semantic Web is represented by the ifcOWL ontology, i.e. the Web Ontology Language (OWL) version of the IFC standard, being one of reference technical standard for AEC/FM. Previous studies have shown how a recommended ifcOWL ontology can be automatically generated by converting the IFC standard from the official EXPRESS schema. However, the resulting ifcOWL is a large monolithic ontology that presents serious limitations for real industrial applications in terms of usability and performance (i.e. querying and reasoning). Possible enhancements to reduce the complexity and the data size consist in (1) modularization of ifcOWL making it easier to use subsets of the entire ontology, and (2) rethinking the contents and structure of an ontology for AEC/FM to better fit in the semantic web scope and make its usage more efficient. The second approach can be enabled by the first one, since it would make it easier to replace some of the ifcOWL modules with new optimized ontologies for the AEC-FM industry. This paper focuses on the first approach presenting a method to automatically generate a modular ifcOWL ontology. The method aims at minimizing the dependencies between modules to better exploit the modularization. The results are compared with simpler and more straight-forward solutions

    Deductive Module Extraction for Expressive Description Logics: Extended Version

    Get PDF
    In deductive module extraction, we determine a small subset of an ontology for a given vocabulary that preserves all logical entailments that can be expressed in that vocabulary. While in the literature stronger module notions have been discussed, we argue that for applications in ontology analysis and ontology reuse, deductive modules, which are decidable and potentially smaller, are often sufficient. We present methods based on uniform interpolation for extracting different variants of deductive modules, satisfying properties such as completeness, minimality and robustness under replacements, the latter being particularly relevant for ontology reuse. An evaluation of our implementation shows that the modules computed by our method are often significantly smaller than those computed by existing methods.This is an extended version of the article in the proceedings of IJCAI 2020
    corecore