1,750 research outputs found

    On Finding Maximum Cardinality Subset of Vectors with a Constraint on Normalized Squared Length of Vectors Sum

    Full text link
    In this paper, we consider the problem of finding a maximum cardinality subset of vectors, given a constraint on the normalized squared length of vectors sum. This problem is closely related to Problem 1 from (Eremeev, Kel'manov, Pyatkin, 2016). The main difference consists in swapping the constraint with the optimization criterion. We prove that the problem is NP-hard even in terms of finding a feasible solution. An exact algorithm for solving this problem is proposed. The algorithm has a pseudo-polynomial time complexity in the special case of the problem, where the dimension of the space is bounded from above by a constant and the input data are integer. A computational experiment is carried out, where the proposed algorithm is compared to COINBONMIN solver, applied to a mixed integer quadratic programming formulation of the problem. The results of the experiment indicate superiority of the proposed algorithm when the dimension of Euclidean space is low, while the COINBONMIN has an advantage for larger dimensions.Comment: To appear in Proceedings of the 6th International Conference on Analysis of Images, Social Networks, and Texts (AIST'2017

    On Characterizing the Data Movement Complexity of Computational DAGs for Parallel Execution

    Get PDF
    Technology trends are making the cost of data movement increasingly dominant, both in terms of energy and time, over the cost of performing arithmetic operations in computer systems. The fundamental ratio of aggregate data movement bandwidth to the total computational power (also referred to the machine balance parameter) in parallel computer systems is decreasing. It is there- fore of considerable importance to characterize the inherent data movement requirements of parallel algorithms, so that the minimal architectural balance parameters required to support it on future systems can be well understood. In this paper, we develop an extension of the well-known red-blue pebble game to develop lower bounds on the data movement complexity for the parallel execution of computational directed acyclic graphs (CDAGs) on parallel systems. We model multi-node multi-core parallel systems, with the total physical memory distributed across the nodes (that are connected through some interconnection network) and in a multi-level shared cache hierarchy for processors within a node. We also develop new techniques for lower bound characterization of non-homogeneous CDAGs. We demonstrate the use of the methodology by analyzing the CDAGs of several numerical algorithms, to develop lower bounds on data movement for their parallel execution

    Building Clusters with Lower-Bounded Sizes

    Get PDF
    Classical clustering problems search for a partition of objects into a fixed number of clusters. In many scenarios however the number of clusters is not known or necessarily fixed. Further, clusters are sometimes only considered to be of significance if they have a certain size. We discuss clustering into sets of minimum cardinality k without a fixed number of sets and present a general model for these types of problems. This general framework allows the comparison of different measures to assess the quality of a clustering. We specifically consider nine quality-measures and classify the complexity of the resulting problems with respect to k. Further, we derive some polynomial-time solvable cases for k = 2 with connections to matching-type problems which, among other graph problems, then are used to compute approximations for larger values of k

    Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation

    Get PDF
    This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arbores- cence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms. Powerful new cuts expressed over a very large set of variables could be added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very signi¯cant improvements over previous algorithms. Several open instances could be solved to optimalityNo keywords;

    Matching

    Get PDF
    corecore