1,146 research outputs found

    New Bounds for the Garden-Hose Model

    Get PDF
    We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Θ(n)\Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(nlog3n)O(n\cdot \log^3 n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f)GH(f) of the order Ω(n2+ϵ)\Omega(n^{2+\epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.Comment: In FSTTCS 201

    Quantum Communications Based on Quantum Hashing

    Get PDF
    In this paper we consider an application of the recently proposed quantum hashing technique for computing Boolean functions in the quantum communication model. The combination of binary functions on non-binary quantum hash function is done via polynomial presentation, which we have called a characteristic of a Boolean function. Based on the characteristic polynomial presentation of Boolean functions and quantum hashing technique we present a method for computing Boolean functions in the quantum one-way communication model, where one of the parties performs his computations and sends a message to the other party, who must output the result after his part of computations. Some of the results are also true in a more restricted Simultaneous Message Passing model with no shared resources, in which communicating parties can interact only via the referee. We give several examples of Boolean functions whose polynomial presentations have specific properties allowing for construction of quantum communication protocols that are provably exponentially better than classical ones in the simultaneous message passing setting

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde
    corecore