7,633 research outputs found

    From truth to computability I

    Get PDF
    The recently initiated approach called computability logic is a formal theory of interactive computation. See a comprehensive online source on the subject at http://www.cis.upenn.edu/~giorgi/cl.html . The present paper contains a soundness and completeness proof for the deductive system CL3 which axiomatizes the most basic first-order fragment of computability logic called the finite-depth, elementary-base fragment. Among the potential application areas for this result are the theory of interactive computation, constructive applied theories, knowledgebase systems, systems for resource-bound planning and action. This paper is self-contained as it reintroduces all relevant definitions as well as main motivations.Comment: To appear in Theoretical Computer Scienc

    Constant-Soundness Interactive Proofs for Local Hamiltonians

    Get PDF
    \newcommand{\Xlin}{\mathcal{X}} \newcommand{\Zlin}{\mathcal{Z}} \newcommand{\C}{\mathbb{C}} We give a quantum multiprover interactive proof system for the local Hamiltonian problem in which there is a constant number of provers, questions are classical of length polynomial in the number of qubits, and answers are of constant length. The main novelty of our protocol is that the gap between completeness and soundness is directly proportional to the promise gap on the (normalized) ground state energy of the Hamiltonian. This result can be interpreted as a concrete step towards a quantum PCP theorem giving entangled-prover interactive proof systems for QMA-complete problems. The key ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld, where the function f:{0,1}n→{0,1}f:\{0,1\}^n\to\{0,1\} is replaced by a pair of functions \Xlin, \Zlin:\{0,1\}^n\to \text{Obs}_d(\C), the set of dd-dimensional Hermitian matrices that square to identity. The test enforces that (i) each function is exactly linear, \Xlin(a)\Xlin(b)=\Xlin(a+b) and \Zlin(a) \Zlin(b)=\Zlin(a+b), and (ii) the two functions are approximately complementary, \Xlin(a)\Zlin(b)\approx (-1)^{a\cdot b} \Zlin(b)\Xlin(a).Comment: 33 page

    Toward Structured Proofs for Dynamic Logics

    Full text link
    We present Kaisar, a structured interactive proof language for differential dynamic logic (dL), for safety-critical cyber-physical systems (CPS). The defining feature of Kaisar is *nominal terms*, which simplify CPS proofs by making the frequently needed historical references to past program states first-class. To support nominals, we extend the notion of structured proof with a first-class notion of *structured symbolic execution* of CPS models. We implement Kaisar in the theorem prover KeYmaera X and reproduce an example on the safe operation of a parachute and a case study on ground robot control. We show how nominals simplify common CPS reasoning tasks when combined with other features of structured proof. We develop an extensive metatheory for Kaisar. In addition to soundness and completeness, we show a formal specification for Kaisar's nominals and relate Kaisar to a nominal variant of dL

    On the Power of Many One-Bit Provers

    Full text link
    We study the class of languages, denoted by \MIP[k, 1-\epsilon, s], which have kk-prover games where each prover just sends a \emph{single} bit, with completeness 1−ϵ1-\epsilon and soundness error ss. For the case that k=1k=1 (i.e., for the case of interactive proofs), Goldreich, Vadhan and Wigderson ({\em Computational Complexity'02}) demonstrate that \SZK exactly characterizes languages having 1-bit proof systems with"non-trivial" soundness (i.e., 1/2<s≤1−2ϵ1/2 < s \leq 1-2\epsilon). We demonstrate that for the case that k≥2k\geq 2, 1-bit kk-prover games exhibit a significantly richer structure: + (Folklore) When s≤12k−ϵs \leq \frac{1}{2^k} - \epsilon, \MIP[k, 1-\epsilon, s] = \BPP; + When 12k+ϵ≤s<22k−ϵ\frac{1}{2^k} + \epsilon \leq s < \frac{2}{2^k}-\epsilon, \MIP[k, 1-\epsilon, s] = \SZK; + When s≥22k+ϵs \ge \frac{2}{2^k} + \epsilon, \AM \subseteq \MIP[k, 1-\epsilon, s]; + For s≤0.62k/2ks \le 0.62 k/2^k and sufficiently large kk, \MIP[k, 1-\epsilon, s] \subseteq \EXP; + For s≥2k/2ks \ge 2k/2^{k}, \MIP[k, 1, 1-\epsilon, s] = \NEXP. As such, 1-bit kk-prover games yield a natural "quantitative" approach to relating complexity classes such as \BPP,\SZK,\AM, \EXP, and \NEXP. We leave open the question of whether a more fine-grained hierarchy (between \AM and \NEXP) can be established for the case when s≥22k+ϵs \geq \frac{2}{2^k} + \epsilon

    Stronger Methods of Making Quantum Interactive Proofs Perfectly Complete

    Full text link
    This paper presents stronger methods of achieving perfect completeness in quantum interactive proofs. First, it is proved that any problem in QMA has a two-message quantum interactive proof system of perfect completeness with constant soundness error, where the verifier has only to send a constant number of halves of EPR pairs. This in particular implies that the class QMA is necessarily included by the class QIP_1(2) of problems having two-message quantum interactive proofs of perfect completeness, which gives the first nontrivial upper bound for QMA in terms of quantum interactive proofs. It is also proved that any problem having an mm-message quantum interactive proof system necessarily has an (m+1)(m+1)-message quantum interactive proof system of perfect completeness. This improves the previous result due to Kitaev and Watrous, where the resulting system of perfect completeness requires m+2m+2 messages if not using the parallelization result.Comment: 41 pages; v2: soundness parameters improved, correction of a minor error in Lemma 23, and removal of the sentences claiming that our techniques are quantumly nonrelativizin

    Generalized Quantum Arthur-Merlin Games

    Get PDF
    This paper investigates the role of interaction and coins in public-coin quantum interactive proof systems (also called quantum Arthur-Merlin games). While prior works focused on classical public coins even in the quantum setting, the present work introduces a generalized version of quantum Arthur-Merlin games where the public coins can be quantum as well: the verifier can send not only random bits, but also halves of EPR pairs. First, it is proved that the class of two-turn quantum Arthur-Merlin games with quantum public coins, denoted qq-QAM in this paper, does not change by adding a constant number of turns of classical interactions prior to the communications of the qq-QAM proof systems. This can be viewed as a quantum analogue of the celebrated collapse theorem for AM due to Babai. To prove this collapse theorem, this paper provides a natural complete problem for qq-QAM: deciding whether the output of a given quantum circuit is close to a totally mixed state. This complete problem is on the very line of the previous studies investigating the hardness of checking the properties related to quantum circuits, and is of independent interest. It is further proved that the class qq-QAM_1 of two-turn quantum-public-coin quantum Arthur-Merlin proof systems with perfect completeness gives new bounds for standard well-studied classes of two-turn interactive proof systems. Finally, the collapse theorem above is extended to comprehensively classify the role of interaction and public coins in quantum Arthur-Merlin games: it is proved that, for any constant m>1, the class of problems having an m-turn quantum Arthur-Merlin proof system is either equal to PSPACE or equal to the class of problems having a two-turn quantum Arthur-Merlin game of a specific type, which provides a complete set of quantum analogues of Babai's collapse theorem.Comment: 31 pages + cover page, the proof of Lemma 27 (Lemma 24 in v1) is corrected, and a new completeness result is adde
    • …
    corecore