3,348 research outputs found

    Scaled Boolean Algebras

    Get PDF
    Scaled Boolean algebras are a category of mathematical objects that arose from attempts to understand why the conventional rules of probability should hold when probabilities are construed, not as frequencies or proportions or the like, but rather as degrees of belief in uncertain propositions. This paper separates the study of these objects from that not-entirely-mathematical problem that motivated them. That motivating problem is explicated in the first section, and the application of scaled Boolean algebras to it is explained in the last section. The intermediate sections deal only with the mathematics. It is hoped that this isolation of the mathematics from the motivating problem makes the mathematics clearer.Comment: 53 pages, 8 Postscript figures, Uses ajour.sty from Academic Press, To appear in Advances in Applied Mathematic

    A Sound and Complete Axiomatization of Majority-n Logic

    Get PDF
    Manipulating logic functions via majority operators recently drew the attention of researchers in computer science. For example, circuit optimization based on majority operators enables superior results as compared to traditional logic systems. Also, the Boolean satisfiability problem finds new solving approaches when described in terms of majority decisions. To support computer logic applications based on majority a sound and complete set of axioms is required. Most of the recent advances in majority logic deal only with ternary majority (MAJ- 3) operators because the axiomatization with solely MAJ-3 and complementation operators is well understood. However, it is of interest extending such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical and practical perspective. In this work, we address this issue by introducing a sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally includes existing majority logic systems. Based on this general set of axioms, computer applications can now fully exploit the expressive power of majority logic.Comment: Accepted by the IEEE Transactions on Computer
    • …
    corecore