1,382 research outputs found

    Towards a compact representation of temporal rasters

    Get PDF
    Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster data that evolve along time named Temporal k^2 raster. It faces the two main issues that arise when dealing with spatio-temporal data: the space consumption and the query response times. It extends a compact data structure for raster data in order to manage time and thus, it is possible to query it directly in compressed form, instead of the classical approach that requires a complete decompression before any manipulation. In addition, in the same compressed space, the new data structure includes two indexes: a spatial index and an index on the values of the cells, thus becoming a self-index for raster data.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 690941. Published in SPIRE 201

    Decoding billions of integers per second through vectorization

    Get PDF
    In many important applications -- such as search engines and relational database systems -- data is stored in the form of arrays of integers. Encoding and, most importantly, decoding of these arrays consumes considerable CPU time. Therefore, substantial effort has been made to reduce costs associated with compression and decompression. In particular, researchers have exploited the superscalar nature of modern processors and SIMD instructions. Nevertheless, we introduce a novel vectorized scheme called SIMD-BP128 that improves over previously proposed vectorized approaches. It is nearly twice as fast as the previously fastest schemes on desktop processors (varint-G8IU and PFOR). At the same time, SIMD-BP128 saves up to 2 bits per integer. For even better compression, we propose another new vectorized scheme (SIMD-FastPFOR) that has a compression ratio within 10% of a state-of-the-art scheme (Simple-8b) while being two times faster during decoding.Comment: For software, see https://github.com/lemire/FastPFor, For data, see http://boytsov.info/datasets/clueweb09gap

    Lossless Differential Compression for Synchronizing Arbitrary Single-Dimensional Strings

    Get PDF
    Differential compression allows expressing a modified document as differences relative to another version of the document. A compressed string requires space relative to amount of changes, irrespective of original document sizes. The purpose of this study was to answer what algorithms are suitable for universal lossless differential compression for synchronizing two arbitrary documents either locally or remotely. Two main problems in differential compression are finding the differences (differencing), and compactly communicating the differences (encoding). We discussed local differencing algorithms based on subsequence searching, hashtable lookups, suffix searching, and projection. We also discussed probabilistic remote algorithms based on both recursive comparison and characteristic polynomial interpolation of hashes computed from variable-length content-defined substrings. We described various heuristics for approximating optimal algorithms as arbitrary long strings and memory limitations force discarding information. Discussion also included compact delta encoding and in-place reconstruction. We presented results from empirical testing using discussed algorithms. The conclusions were that multiple algorithms need to be integrated into a hybrid implementation, which heuristically chooses algorithms based on evaluation of the input data. Algorithms based on hashtable lookups are faster on average and require less memory, but algorithms based on suffix searching find least differences. Interpolating characteristic polynomials was found to be too slow for general use. With remote hash comparison, content-defined chunks and recursive comparison can reduce protocol overhead. A differential compressor should be merged with a state-of-art non-differential compressor to enable more compact delta encoding. Input should be processed multiple times to allow constant a space bound without significant reduction in compression efficiency. Compression efficiently of current popular synchronizers could be improved, as our empiral testing showed that a non-differential compressor produced smaller files without having access to one of the two strings

    Entropy reduction via simplified image contourization

    Get PDF
    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image
    corecore