256 research outputs found

    On the Identity and Group Problems for Complex Heisenberg Matrices

    Full text link
    We study the Identity Problem, the problem of determining if a finitely generated semigroup of matrices contains the identity matrix; see Problem 3 (Chapter 10.3) in ``Unsolved Problems in Mathematical Systems and Control Theory'' by Blondel and Megretski (2004). This fundamental problem is known to be undecidable for Z4×4\mathbb{Z}^{4 \times 4} and decidable for Z2×2\mathbb{Z}^{2 \times 2}. The Identity Problem has been recently shown to be in polynomial time by Dong for the Heisenberg group over complex numbers in any fixed dimension with the use of Lie algebra and the Baker-Campbell-Hausdorff formula. We develop alternative proof techniques for the problem making a step forward towards more general problems such as the Membership Problem. We extend our techniques to show that the fundamental problem of determining if a given set of Heisenberg matrices generates a group, can also be decided in polynomial time

    Multiparametric Quantum Algebras and the Cosmological Constant

    Get PDF
    With a view towards applications for de Sitter, we construct the multi-parametric qq-deformation of the so(5,\IC) algebra using the Faddeev-Reshetikhin-Takhtadzhyan (FRT) formalism.Comment: v4: cosmetic changes from the published versio

    Bertotti-Robinson type solutions to Dilaton-Axion Gravity

    Get PDF
    We present a new solution to dilaton-axion gravity which looks like a rotating Bertotti-Robinson (BR) Universe. It is supported by an homogeneous Maxwell field and a linear axion and can be obtained as a near-horizon limit of extremal rotating dilaton-axion black holes. It has the isometry SL(2,R)×U(1)SL(2,R)\times U(1) where U(1) is the remnant of the SO(3) symmetry of BR broken by rotation, while SL(2,R)SL(2,R) corresponds to the AdS2AdS_2 sector which no longer factors out of the full spacetime. Alternatively our solution can be obtained from the D=5 vacuum counterpart to the dyonic BR with equal electric and magnetic field strengths. The derivation amounts to smearing it in D=6 and then reducing to D=4 with dualization of one Kaluza-Klein two-form in D=5 to produce an axion. Using a similar dualization procedure, the rotating BR solution is uplifted to D=11 supergravity. We show that it breaks all supersymmetries of N=4 supergravity in D=4, and that its higher dimensional embeddings are not supersymmetric either. But, hopefully it may provide a new arena for corformal mechanics and holography. Applying a complex coordinate transformation we also derive a BR solution endowed with a NUT parameter.Comment: 21 page

    The GUP effect on Hawking Radiation of the 2+1 dimensional Black Hole

    Full text link
    We investigate the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation of the 2+1 dimensional Martinez-Zanelli black hole by using the Hamilton-Jacobi method. In this connection, we discuss the tunnelling probabilities and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. Therefore, we use the modified Klein-Gordon and Dirac equations based on the GUP. Then, we observe that the Hawking temperature of the scalar and Dirac particles depend on not only the black hole properties, but also the properties of the tunnelling particle, such as angular momentum, energy and mass. And, in this situation, we see that the tunnellig probability and the Hawking radiation of the Dirac particle is different from that of the scalar particle.Comment: 9 page

    De Sitter Holography with a Finite Number of States

    Full text link
    We investigate the possibility that, in a combined theory of quantum mechanics and gravity, de Sitter space is described by finitely many states. The notion of observer complementarity, which states that each observer has complete but complementary information, implies that, for a single observer, the complete Hilbert space describes one side of the horizon. Observer complementarity is implemented by identifying antipodal states with outgoing states. The de Sitter group acts on S-matrix elements. Despite the fact that the de Sitter group has no nontrivial finite-dimensional unitary representations, we show that it is possible to construct an S-matrix that is finite-dimensional, unitary, and de Sitter-invariant. We present a class of examples that realize this idea holographically in terms of spinor fields on the boundary sphere. The finite dimensionality is due to Fermi statistics and an `exclusion principle' that truncates the orthonormal basis in which the spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe

    Melonic theories over diverse number systems

    Get PDF
    Melonic field theories are defined over the p-adic numbers with the help of a sign character. Our construction works over the reals as well as the p-adics, and it includes the fermionic and bosonic Klebanov-Tarnopolsky models as special cases; depending on the sign character, the symmetry group of the field theory can be either orthogonal or symplectic. Analysis of the Schwinger-Dyson equation for the two-point function in the leading melonic limit shows that power law scaling behavior in the infrared arises for fermionic theories when the sign character is non-trivial, and for bosonic theories when the sign character is trivial. In certain cases, the Schwinger-Dyson equation can be solved exactly using a quartic polynomial equation, and the solution interpolates between the ultraviolet scaling controlled by the spectral parameter and the universal infrared scaling. As a by-product of our analysis, we see that melonic field theories defined over the real numbers can be modified by replacing the time derivative by a bilocal kinetic term with a continuously variable spectral parameter. The infrared scaling of the resulting two-point function is universal, independent of the spectral parameter of the ultraviolet theory

    Effective actions at finite temperature

    Full text link
    This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.Comment: 9 pages, revtex, 1 figure, references adde

    From Gaudin Integrable Models to dd-dimensional Multipoint Conformal Blocks

    Full text link
    In this work we initiate an integrability-based approach to multipoint conformal blocks for higher dimensional conformal field theories. Our main observation is that conformal blocks for NN-point functions may be considered as eigenfunctions of integrable Gaudin Hamiltonians. This provides us with a complete set of differential equations that can be used to evaluate multipoint blocks.Comment: 7 pages, 1 figure; added discussion of general dimensions and general number of points in comb channe
    • …
    corecore