10,766 research outputs found

    On the Commutative Equivalence of Context-Free Languages

    Get PDF
    The problem of the commutative equivalence of context-free and regular languages is studied. In particular conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated

    Basic notions of universal algebra for language theory and graph grammars

    Get PDF
    AbstractThis paper reviews the basic properties of the equational and recognizable subsets of general algebras; these sets can be seen as generalizations of the context-free and regular languages, respectively. This approach, based on Universal Algebra, facilitates the development of the theory of formal languages so as to include the description of sets of finite trees, finite graphs, finite hypergraphs, tuples of words, partially commutative words (also called traces) and other similar finite objects

    On regularity of context-free languages

    Get PDF
    AbstractThis paper considers conditions under which a context-free language is regular and conditions which imposed on (productions of) a rewriting system generating a context-free language will guarantee that the generated language is regular. In particular: 1.(1) necessary and sufficient conditions on productions of a unitary grammar are given that guarantee the generated language to be regular (a unitary grammar is a semi-Thue system in which the left-hand of each production is the empty word), and2.(2) it is proved that commutativity of a linear language implies its regularity. To obtain the former result, we give a generalization of the Myhill–Nerode characterization of the regular languages in terms of well-quasi orders, along with a generalization of Higman's well-quasi order result concerning the subsequence embedding relation on Σ*. In obtaining the latter results, we introduce the class of periodic languages, and demonstrate how they can be used to characterize the commutative regular languages. Here we also utilize the theory of well-quasi orders

    Partially-commutative context-free languages

    Get PDF
    The paper is about a class of languages that extends context-free languages (CFL) and is stable under shuffle. Specifically, we investigate the class of partially-commutative context-free languages (PCCFL), where non-terminal symbols are commutative according to a binary independence relation, very much like in trace theory. The class has been recently proposed as a robust class subsuming CFL and commutative CFL. This paper surveys properties of PCCFL. We identify a natural corresponding automaton model: stateless multi-pushdown automata. We show stability of the class under natural operations, including homomorphic images and shuffle. Finally, we relate expressiveness of PCCFL to two other relevant classes: CFL extended with shuffle and trace-closures of CFL. Among technical contributions of the paper are pumping lemmas, as an elegant completion of known pumping properties of regular languages, CFL and commutative CFL.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    Commutative Languages and their Composition by Consensual Methods

    Get PDF
    Commutative languages with the semilinear property (SLIP) can be naturally recognized by real-time NLOG-SPACE multi-counter machines. We show that unions and concatenations of such languages can be similarly recognized, relying on -- and further developing, our recent results on the family of consensually regular (CREG) languages. A CREG language is defined by a regular language on the alphabet that includes the terminal alphabet and its marked copy. New conditions, for ensuring that the union or concatenation of CREG languages is closed, are presented and applied to the commutative SLIP languages. The paper contributes to the knowledge of the CREG family, and introduces novel techniques for language composition, based on arithmetic congruences that act as language signatures. Open problems are listed.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Complexity of Problems of Commutative Grammars

    Full text link
    We consider commutative regular and context-free grammars, or, in other words, Parikh images of regular and context-free languages. By using linear algebra and a branching analog of the classic Euler theorem, we show that, under an assumption that the terminal alphabet is fixed, the membership problem for regular grammars (given v in binary and a regular commutative grammar G, does G generate v?) is P, and that the equivalence problem for context free grammars (do G_1 and G_2 generate the same language?) is in Π2P\mathrm{\Pi_2^P}
    • …
    corecore