409 research outputs found

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Rewriting Logic Semantics of a Plan Execution Language

    Get PDF
    The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA to support autonomous spacecraft operations. In this paper, we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance logical engine. The rewriting logic semantics is by itself a formal interpreter of the language and can be used as a semantic benchmark for the implementation of PLEXIL executives. The implementation in Maude has the additional benefit of making available to PLEXIL designers and developers all the formal analysis and verification tools provided by Maude. The formalization of the PLEXIL semantics in rewriting logic poses an interesting challenge due to the synchronous nature of the language and the prioritized rules defining its semantics. To overcome this difficulty, we propose a general procedure for simulating synchronous set relations in rewriting logic that is sound and, for deterministic relations, complete. We also report on two issues at the design level of the original PLEXIL semantics that were identified with the help of the executable specification in Maude

    Self-management of machine-to-machine communications: a multi-models approach

    Get PDF
    International audienceMachine-to-Machine (M2M) paradigm apply to systems composed by numerous devices sharing information and making cooperative decisions with little or no human intervention. The M2M standard defined by the European Telecommunications Standards Institute (ETSI) is the only one providing an end-to-end view of the global M2M architecture. Noticeably, it furnishes a standardised framework for inter-operable M2M services that satisfies most of M2M modelling requirements. However, and even though M2M systems usually operate in highly evolving contexts, this standard does not address the issue of system adaptations. It is furthermore unsuitable for building self-managed systems. This paper introduces a multi-model approach for modelling manageable M2M systems. Said approach consists in a formal graph-based model on top of the ETSI M2M standard, alongside bi-directional updates that ensure layer coherency. Its fitness for enforcing self-management properties is demonstrated by designing high-level reconfiguration rules. Finally, its applicability is illustrated and evaluated using a smart-metering application

    Higher Catoids, Higher Quantales and their Correspondences

    Full text link
    We establish modal correspondences between omega-catoids and convolution omega-quantales. These are related to J\'onsson-Tarski style-dualities between relational structures and lattices with operators. We introduce omega-catoids as generalisations of (strict) omega-categories and in particular of the higher path categories generated by polygraphs (or computads) in higher rewriting. Convolution omega-quantales generalise the powerset omega-Kleene algebras recently proposed for algebraic coherence proofs in higher rewriting to weighted variants. We extend these correspondences to ({\omega},p)-catoids and convolution ({\omega},p)-quantales suitable for modelling homotopies in higher rewriting. We also specialise them to finitely decomposable ({\omega}, p)-catoids, an appropriate setting for defining ({\omega}, p)-semirings and ({\omega}, p)-Kleene algebras. These constructions support the systematic development and justification of higher quantale axioms relative to a previous ad hoc approach.Comment: 46 pages, 8 figure

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    High-level signatures and initial semantics

    Get PDF
    We present a device for specifying and reasoning about syntax for datatypes, programming languages, and logic calculi. More precisely, we study a notion of signature for specifying syntactic constructions. In the spirit of Initial Semantics, we define the syntax generated by a signature to be the initial object---if it exists---in a suitable category of models. In our framework, the existence of an associated syntax to a signature is not automatically guaranteed. We identify, via the notion of presentation of a signature, a large class of signatures that do generate a syntax. Our (presentable) signatures subsume classical algebraic signatures (i.e., signatures for languages with variable binding, such as the pure lambda calculus) and extend them to include several other significant examples of syntactic constructions. One key feature of our notions of signature, syntax, and presentation is that they are highly compositional, in the sense that complex examples can be obtained by assembling simpler ones. Moreover, through the Initial Semantics approach, our framework provides, beyond the desired algebra of terms, a well-behaved substitution and the induction and recursion principles associated to the syntax. This paper builds upon ideas from a previous attempt by Hirschowitz-Maggesi, which, in turn, was directly inspired by some earlier work of Ghani-Uustalu-Hamana and Matthes-Uustalu. The main results presented in the paper are computer-checked within the UniMath system.Comment: v2: extended version of the article as published in CSL 2018 (http://dx.doi.org/10.4230/LIPIcs.CSL.2018.4); list of changes given in Section 1.5 of the paper; v3: small corrections throughout the paper, no major change
    • …
    corecore