459 research outputs found

    Vertex identifying codes for the n-dimensional lattice

    Full text link
    An rr-identifying code on a graph GG is a set C⊂V(G)C\subset V(G) such that for every vertex in V(G)V(G), the intersection of the radius-rr closed neighborhood with CC is nonempty and different. Here, we provide an overview on codes for the nn-dimensional lattice, discussing the case of 1-identifying codes, constructing a sparse code for the 4-dimensional lattice as well as showing that for fixed nn, the minimum density of an rr-identifying code is Θ(1/rn−1)\Theta(1/r^{n-1}).Comment: 10p

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi

    Dissections, Hom-complexes and the Cayley trick

    Get PDF
    We show that certain canonical realizations of the complexes Hom(G,H) and Hom_+(G,H) of (partial) graph homomorphisms studied by Babson and Kozlov are in fact instances of the polyhedral Cayley trick. For G a complete graph, we then characterize when a canonical projection of these complexes is itself again a complex, and exhibit several well-known objects that arise as cells or subcomplexes of such projected Hom-complexes: the dissections of a convex polygon into k-gons, Postnikov's generalized permutohedra, staircase triangulations, the complex dual to the lower faces of a cyclic polytope, and the graph of weak compositions of an integer into a fixed number of summands.Comment: 23 pages, 5 figures; improved exposition; accepted for publication in JCT

    On Identifying and Locating-Dominating Codes in the Infinite King Grid

    Get PDF
    Siirretty Doriast

    On Vertex Identifying Codes For Infinite Lattices

    Get PDF
    PhD Thesis--A compilation of the papers: "Lower Bounds for Identifying Codes in Some Infinite Grids", "Improved Bounds for r-identifying Codes of the Hex Grid", and "Vertex Identifying Codes for the n-dimensional Lattics" along with some other resultsComment: 91p

    An improved lower bound for (1,<=2)-identifying codes in the king grid

    Full text link
    We call a subset CC of vertices of a graph GG a (1,≤ℓ)(1,\leq \ell)-identifying code if for all subsets XX of vertices with size at most ℓ\ell, the sets {c∈C∣∃u∈X,d(u,c)≤1}\{c\in C |\exists u \in X, d(u,c)\leq 1\} are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a (1,≤2)(1,\leq 2)-identifying code in the king grid with density 3/7 and that there are no such identifying codes with density smaller than 5/12. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any (1,≤2)(1,\leq 2)-identifying code of the king grid has density at least 47/111
    • …
    corecore