45,409 research outputs found

    Revisiting Numerical Pattern Mining with Formal Concept Analysis

    Get PDF
    In this paper, we investigate the problem of mining numerical data in the framework of Formal Concept Analysis. The usual way is to use a scaling procedure --transforming numerical attributes into binary ones-- leading either to a loss of information or of efficiency, in particular w.r.t. the volume of extracted patterns. By contrast, we propose to directly work on numerical data in a more precise and efficient way, and we prove it. For that, the notions of closed patterns, generators and equivalent classes are revisited in the numerical context. Moreover, two original algorithms are proposed and used in an evaluation involving real-world data, showing the predominance of the present approach

    Cech Closure Spaces: A Unified Framework for Discrete Homotopy

    Full text link
    Motivated by constructions in topological data analysis and algebraic combinatorics, we study homotopy theory on the category of Cech closure spaces Cl\mathbf{Cl}, the category whose objects are sets endowed with a Cech closure operator and whose morphisms are the continuous maps between them. We introduce new classes of Cech closure structures on metric spaces, graphs, and simplicial complexes, and we show how each of these cases gives rise to an interesting homotopy theory. In particular, we show that there exists a natural family of Cech closure structures on metric spaces which produces a non-trivial homotopy theory for finite metric spaces, i.e. point clouds, the spaces of interest in topological data analysis. We then give a Cech closure structure to graphs and simplicial complexes which may be used to construct a new combinatorial (as opposed to topological) homotopy theory for each skeleton of those spaces. We further show that there is a Seifert-van Kampen theorem for closure spaces, a well-defined notion of persistent homotopy, and an associated interleaving distance. As an illustration of the difference with the topological setting, we calculate the fundamental group for the circle, `circular graphs', and the wedge of circles endowed with different closure structures. Finally, we produce a continuous map from the topological circle to `circular graphs' which, given the appropriate closure structures, induces an isomorphism on the fundamental groups.Comment: Incorporated referee comments, 41 page

    Quantale Modules and their Operators, with Applications

    Full text link
    The central topic of this work is the categories of modules over unital quantales. The main categorical properties are established and a special class of operators, called Q-module transforms, is defined. Such operators - that turn out to be precisely the homomorphisms between free objects in those categories - find concrete applications in two different branches of image processing, namely fuzzy image compression and mathematical morphology

    Between quantum logic and concurrency

    Full text link
    We start from two closure operators defined on the elements of a special kind of partially ordered sets, called causal nets. Causal nets are used to model histories of concurrent processes, recording occurrences of local states and of events. If every maximal chain (line) of such a partially ordered set meets every maximal antichain (cut), then the two closure operators coincide, and generate a complete orthomodular lattice. In this paper we recall that, for any closed set in this lattice, every line meets either it or its orthocomplement in the lattice, and show that to any line, a two-valued state on the lattice can be associated. Starting from this result, we delineate a logical language whose formulas are interpreted over closed sets of a causal net, where every line induces an assignment of truth values to formulas. The resulting logic is non-classical; we show that maximal antichains in a causal net are associated to Boolean (hence "classical") substructures of the overall quantum logic.Comment: In Proceedings QPL 2012, arXiv:1407.842

    Interval-based Synthesis

    Get PDF
    We introduce the synthesis problem for Halpern and Shoham's modal logic of intervals extended with an equivalence relation over time points, abbreviated HSeq. In analogy to the case of monadic second-order logic of one successor, the considered synthesis problem receives as input an HSeq formula phi and a finite set Sigma of propositional variables and temporal requests, and it establishes whether or not, for all possible evaluations of elements in Sigma in every interval structure, there exists an evaluation of the remaining propositional variables and temporal requests such that the resulting structure is a model for phi. We focus our attention on decidability of the synthesis problem for some meaningful fragments of HSeq, whose modalities are drawn from the set A (meets), Abar (met by), B (begins), Bbar (begun by), interpreted over finite linear orders and natural numbers. We prove that the fragment ABBbareq is decidable (non-primitive recursive hard), while the fragment AAbarBBbar turns out to be undecidable. In addition, we show that even the synthesis problem for ABBbar becomes undecidable if we replace finite linear orders by natural numbers.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    • …
    corecore