93 research outputs found

    Independent sets of maximum weight in apple-free graphs

    Get PDF
    We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph G to be apple-free; the algorithm either finds an independent set of maximum weight in G or reports that G is not apple-free

    Maximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull

    Full text link
    The Maximum Weight Independent Set (MWIS) Problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. Being one of the most investigated and most important problems on graphs, it is well known to be NP-complete and hard to approximate. The complexity of MWIS is open for hole-free graphs (i.e., graphs without induced subgraphs isomorphic to a chordless cycle of length at least five). By applying clique separator decomposition as well as modular decomposition, we obtain polynomial time solutions of MWIS for odd-hole- and dart-free graphs as well as for odd-hole- and bull-free graphs (dart and bull have five vertices, say a,b,c,d,ea,b,c,d,e, and dart has edges ab,ac,ad,bd,cd,deab,ac,ad,bd,cd,de, while bull has edges ab,bc,cd,be,ceab,bc,cd,be,ce). If the graphs are hole-free instead of odd-hole-free then stronger structural results and better time bounds are obtained

    Organizing the atoms of the clique separator decomposition into an atom tree

    Get PDF
    International audienceWe define an atom tree of a graph as a generalization of a clique tree: its nodes are the atoms obtained by clique minimal separator decomposition, and its edges correspond to the clique minimal separators of the graph.Given a graph GG, we compute an atom tree by using a clique tree of a minimal triangulation HH of GG. Computing an atom tree with such a clique tree as input can be done in O(min(nm,m+nf))O(min(nm,m+nf)), where ff is the number of fill edges added by the triangulation. When both a minimal triangulation and the clique minimal separators of GG are provided, we compute an atom tree of GG in O(m+f)O(m+f) time, which is in O(n2)O(n2) time.We give an O(nm)O(nm) time algorithm, based on MCS, which combines in a single pass the 3 steps involved in building an atom tree: computing a minimal triangulation, constructing a clique tree, and constructing the corresponding atom tree.Finally, we present a process which uses a traversal of a clique tree of a minimal triangulation to determine the clique minimal separators and build the corresponding atom tree in O(n(n+t))O(n(n+t)) time, where tt is the number of 2-pairs of HH (tt is at most View the MathML sourcem¯−f, where View the MathML sourcem¯ is the number of edges of the complement graph); to complete this, we also give an algorithm which computes a minimal triangulation in View the MathML sourceO(n(n+m¯)) time, thus providing an approach to compute the decomposition in View the MathML sourceO(n(n+m¯)) time

    Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences

    Get PDF
    AbstractClique separator decomposition, introduced by Whitesides and Tarjan, is one of the most important graph decompositions. A hole is a chordless cycle with at least five vertices. A paraglider is a graph with five vertices a,b,c,d,e and edges ab,ac,bc,bd,cd,ae,de. We show that every (hole, paraglider)-free graph admits a clique separator decomposition into graphs of three very specific types. This yields efficient algorithms for various optimization problems in this class of graphs

    Separability and Vertex Ordering of Graphs

    Get PDF
    Many graph optimization problems, such as finding an optimal coloring, or a largest clique, can be solved by a divide-and-conquer approach. One such well-known technique is decomposition by clique separators where a graph is decomposed into special induced subgraphs along their clique separators. While the most common practice of this method employs minimal clique separators, in this work we study other variations as well. We strive to characterize their structure and in particular the bound on the number of atoms. In fact, we strengthen the known bounds for the general clique cutset decomposition and the minimal clique separator decomposition. Graph ordering is the arrangement of a graph’s vertices according to a certain logic and is a useful tool in optimization problems. Special types of vertices are often recognized in graph classes, for instance it is well-known every chordal graph contains a simplicial vertex. Vertex-ordering, based on such properties, have originated many linear time algorithms. We propose to define a new family named SE-Class such that every graph belonging to this family inherently contains a simplicial extreme, that is a vertex which is either simplicial or has exactly two neighbors which are non-adjacent. Our family lends itself to an ordering based on simplicial extreme vertices (named SEO) which we demonstrate to be advantageous for the coloring and maximum clique problems. In addition, we examine the relation of SE-Class to the family of (Even-Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole, Diamond, Claw)-free graphs. We showcase the applications of those two core tools, namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free family

    On the structure of (pan, even hole)-free graphs

    Full text link
    A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our O(nm)O(nm)-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our O(n2.5+nm)O(n^{2.5}+nm)-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.Comment: Accepted to appear in the Journal of Graph Theor
    corecore