17,365 research outputs found

    Anterior Hippocampus and Goal-Directed Spatial Decision Making

    Get PDF
    Contains fulltext : 115487.pdf (publisher's version ) (Open Access

    Spike Clustering and Neuron Tracking over Successive Time Windows

    Get PDF
    This paper introduces a new methodology for tracking signals from individual neurons over time in multiunit extracellular recordings. The core of our strategy relies upon an extension of a traditional mixture model approach, with parameter optimization via expectation-maximimization (EM), to incorporate clustering results from the preceding time period in a Bayesian manner. EM initialization is also achieved by utilizing these prior clustering results. After clustering, we match the current and prior clusters to track persisting neurons. Applications of this spike sorting method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results

    Multiorder neurons for evolutionary higher-order clustering and growth

    Get PDF
    This letter proposes to use multiorder neurons for clustering irregularly shaped data arrangements. Multiorder neurons are an evolutionary extension of the use of higher-order neurons in clustering. Higher-order neurons parametrically model complex neuron shapes by replacing the classic synaptic weight by higher-order tensors. The multiorder neuron goes one step further and eliminates two problems associated with higher-order neurons. First, it uses evolutionary algorithms to select the best neuron order for a given problem. Second, it obtains more information about the underlying data distribution by identifying the correct order for a given cluster of patterns. Empirically we observed that when the correlation of clusters found with ground truth information is used in measuring clustering accuracy, the proposed evolutionary multiorder neurons method can be shown to outperform other related clustering methods. The simulation results from the Iris, Wine, and Glass data sets show significant improvement when compared to the results obtained using self-organizing maps and higher-order neurons. The letter also proposes an intuitive model by which multiorder neurons can be grown, thereby determining the number of clusters in data

    A study of dependency features of spike trains through copulas

    Get PDF
    Simultaneous recordings from many neurons hide important information and the connections characterizing the network remain generally undiscovered despite the progresses of statistical and machine learning techniques. Discerning the presence of direct links between neuron from data is still a not completely solved problem. To enlarge the number of tools for detecting the underlying network structure, we propose here the use of copulas, pursuing on a research direction we started in [1]. Here, we adapt their use to distinguish different types of connections on a very simple network. Our proposal consists in choosing suitable random intervals in pairs of spike trains determining the shapes of their copulas. We show that this approach allows to detect different types of dependencies. We illustrate the features of the proposed method on synthetic data from suitably connected networks of two or three formal neurons directly connected or influenced by the surrounding network. We show how a smart choice of pairs of random times together with the use of empirical copulas allows to discern between direct and un-direct interactions

    A Miniature Robot for Isolating and Tracking Neurons in Extracellular Cortical Recordings

    Get PDF
    This paper presents a miniature robot device and control algorithm that can autonomously position electrodes in cortical tissue for isolation and tracking of extracellular signals of individual neurons. Autonomous electrode positioning can significantly enhance the efficiency and quality of acute electrophysiolgical experiments aimed at basic understanding of the nervous system. Future miniaturized systems of this sort could also overcome some of the inherent difficulties in estabilishing long-lasting neural interfaces that are needed for practical realization of neural prostheses. The paper describes the robot's design and summarizes the overall structure of the control system that governs the electrode positioning process. We present a new sequential clustering algorithm that is key to improving our system's performance, and which may have other applications in robotics. Experimental results in macaque cortex demonstrate the validity of our approach
    corecore