146 research outputs found

    Representations and characterizations of languages in Chomsky hierarchy by means of insertion-deletion systems

    Get PDF
    Insertion-deletion operations are much investigated in linguistics and in DNA computing and several characterizations of Turing computability were obtained in this framework. In this note we contribute to this research direction with a new characterization of this type, as well as with representations of regular and context-free languages, mainly starting from context-free insertion systems of as small as possible complexity. For instance, each recursively enumerable language L can be represented in a way similar to the celebrated Chomsky-Schützenberger representation of context-free languages, i.e., in the form L = h(L( ) ∩D), where is an insertion system of weight (3, 0) (at most three symbols are inserted in a context of length zero), h is a projection, and D is a Dyck language. A similar representation can be obtained for regular languages, involving insertion systems of weight (2,0) and star languages, as well as for context-free languages – this time using insertion systems of weight (3, 0) and star languages.Ministerio de Educación y Ciencia TIN2006-1342

    Networks of Evolutionary Processors: A Survey

    Get PDF

    On the Power of Insertion P Systems of Small Size

    Get PDF
    In this article we investigate insertion systems of small size in the framework of P systems. We consider P systems with insertion rules having one symbol context and we show that they have the computational power of matrix grammars. If contexts of length two are permitted, then any recursively enumerable language can be generated. In both cases an inverse morphism and a weak coding were applied to the output of the corresponding P systems

    Word Blending and Other Formal Models of Bio-operations

    Get PDF
    As part of ongoing efforts to view biological processes as computations, several formal models of DNA-based processes have been proposed and studied in the formal language literature. In this thesis, we survey some classical formal language word and language operations, as well as several bio-operations, and we propose a new operation inspired by a DNA recombination lab protocol known as Cross-pairing Polymerase Chain Reaction, or XPCR. More precisely, we define and study a word operation called word blending which models a special case of XPCR, where two words x w p and q w y sharing a non-empty overlap part w generate the word x w y. Properties of word blending that we study include closure properties of the Chomsky families of languages under this operation and its iterated version, existence of solution to equations involving this operation, and its state complexity

    On restricted insertion-deletion systems

    Get PDF

    P Systems with Minimal Insertion and Deletion

    Get PDF
    In this paper we consider insertion-deletion P systems with priority of deletion over the insertion.We show that such systems with one symbol context-free insertion and deletion rules are able to generate PsRE. If one-symbol one-sided context is added to insertion or deletion rules but no priority is considered, then all recursively enumerable languages can be generated. The same result holds if a deletion of two symbols is permitted. We also show that the priority relation is very important and in its absence the corresponding class of P systems is strictly included in MAT

    Formal models of the extension activity of DNA polymerase enzymes

    Get PDF
    The study of formal language operations inspired by enzymatic actions on DNA is part of ongoing efforts to provide a formal framework and rigorous treatment of DNA-based information and DNA-based computation. Other studies along these lines include theoretical explorations of splicing systems, insertion-deletion systems, substitution, hairpin extension, hairpin reduction, superposition, overlapping concatenation, conditional concatenation, contextual intra- and intermolecular recombinations, as well as template-guided recombination. First, a formal language operation is proposed and investigated, inspired by the naturally occurring phenomenon of DNA primer extension by a DNA-template-directed DNA polymerase enzyme. Given two DNA strings u and v, where the shorter string v (called the primer) is Watson-Crick complementary and can thus bind to a substring of the longer string u (called the template) the result of the primer extension is a DNA string that is complementary to a suffix of the template which starts at the binding position of the primer. The operation of DNA primer extension can be abstracted as a binary operation on two formal languages: a template language L1 and a primer language L2. This language operation is called L1-directed extension of L2 and the closure properties of various language classes, including the classes in the Chomsky hierarchy, are studied under directed extension. Furthermore, the question of finding necessary and sufficient conditions for a given language of target strings to be generated from a given template language when the primer language is unknown is answered. The canonic inverse of directed extension is used in order to obtain the optimal solution (the minimal primer language) to this question. The second research project investigates properties of the binary string and language operation overlap assembly as defined by Csuhaj-Varju, Petre and Vaszil as a formal model of the linear self-assembly of DNA strands: The overlap assembly of two strings, xy and yz, which share an overlap y, results in the string xyz. In this context, we investigate overlap assembly and its properties: closure properties of various language families under this operation, and related decision problems. A theoretical analysis of the possible use of iterated overlap assembly to generate combinatorial DNA libraries is also given. The third research project continues the exploration of the properties of the overlap assembly operation by investigating closure properties of various language classes under iterated overlap assembly, and the decidability of the completeness of a language. The problem of deciding whether a given string is terminal with respect to a language, and the problem of deciding if a given language can be generated by an overlap assembly operation of two other given languages are also investigated

    P Systems with Minimal Left and Right Insertion and Deletion

    Get PDF
    Summary. In this article we investigate the operations of insertion and deletion performed at the ends of a string. We show that using these operations in a P systems framework (which corresponds to using specific variants of graph control), computational completeness can even be achieved with the operations of left and right insertion and deletion of only one symbol.

    P Systems with Minimal Left and Right Insertion and Deletion

    Get PDF
    In this article we investigate the operations of insertion and deletion performed at the ends of a string. We show that using these operations in a P systems framework (which corresponds to using specific variants of graph control), computational completeness can even be achieved with the operations of left and right insertion and deletion of only one symbol
    corecore