7,624 research outputs found

    Energy Efficient Coordinated Beamforming for Multi-cell MISO Systems

    Full text link
    In this paper, we investigate the optimal energy efficient coordinated beamforming in multi-cell multiple-input single-output (MISO) systems with KK multiple-antenna base stations (BS) and KK single-antenna mobile stations (MS), where each BS sends information to its own intended MS with cooperatively designed transmit beamforming. We assume single user detection at the MS by treating the interference as noise. By taking into account a realistic power model at the BS, we characterize the Pareto boundary of the achievable energy efficiency (EE) region of the KK links, where the EE of each link is defined as the achievable data rate at the MS divided by the total power consumption at the BS. Since the EE of each link is non-cancave (which is a non-concave function over an affine function), characterizing this boundary is difficult. To meet this challenge, we relate this multi-cell MISO system to cognitive radio (CR) MISO channels by applying the concept of interference temperature (IT), and accordingly transform the EE boundary characterization problem into a set of fractional concave programming problems. Then, we apply the fractional concave programming technique to solve these fractional concave problems, and correspondingly give a parametrization for the EE boundary in terms of IT levels. Based on this characterization, we further present a decentralized algorithm to implement the multi-cell coordinated beamforming, which is shown by simulations to achieve the EE Pareto boundary.Comment: 6 pages, 2 figures, to be presented in IEEE GLOBECOM 201

    On Orthogonal Band Allocation for Multi-User Multi-Band Cognitive Radio Networks: Stability Analysis

    Full text link
    In this work, we study the problem of band allocation of MsM_s buffered secondary users (SUs) to MpM_p primary bands licensed to (owned by) MpM_p buffered primary users (PUs). The bands are assigned to SUs in an orthogonal (one-to-one) fashion such that neither band sharing nor multi-band allocations are permitted. In order to study the stability region of the secondary network, the optimization problem used to obtain the stability region's envelope (closure) is established and is shown to be a linear program which can be solved efficiently and reliably. We compare our orthogonal allocation system with two typical low-complexity and intuitive band allocation systems. In one system, each cognitive user chooses a band randomly in each time slot with some assignment probability designed such that the system maintained stable, while in the other system fixed (deterministic) band assignment is adopted throughout the lifetime of the network. We derive the stability regions of these two systems. We prove mathematically, as well as through numerical results, the advantages of our proposed orthogonal system over the other two systems.Comment: Conditional Acceptance in IEEE Transactions on Communication
    • …
    corecore