3,968 research outputs found

    Finite Domain Anomalous Spreading Consistent with First and Second Law

    Full text link
    After reviewing the problematic behavior of some previously suggested finite interval spatial operators of the symmetric Riesz type, we create a wish list leading toward a new spatial operator suitable to use in the space-time fractional differential equation of anomalous diffusion when the transport of material is strictly restricted to a bounded domain. Based on recent studies of wall effects, we introduce a new definition of the spatial operator and illustrate its favorable characteristics. We provide two numerical methods to solve the modified space-time fractional differential equation and show particular results illustrating compliance to our established list of requirements, most important to the conservation principle and the second law of thermodynamics.Comment: 14 figure

    Memory effects in measure transport equations

    Full text link
    Transport equations with a nonlocal velocity field have been introduced as a continuum model for interacting particle systems arising in physics, chemistry and biology. Fractional time derivatives, given by convolution integrals of the time-derivative with power-law kernels, are typical for memory effects in complex systems. In this paper we consider a nonlinear transport equation with a fractional time-derivative. We provide a well-posedness theory for weak measure solutions of the problem and an integral formula which generalizes the classical push-forward representation formula to this setting
    corecore