1,674 research outputs found

    Implementation of continuous flow manufacturing in United States industries

    Get PDF
    Continuous Flow Manufacturing (CFM) is one of the key strategies to enable the United States industries to adapt to any volume increase and rapidly changing requirements of the market place. CFM is an on-going analysis and improvement activity used to optimize the efficiency, effectiveness and flexibility of any process. The two basic goals of CFM are to reduce cycle time to less than customer order leadtime and to eliminate inefficiencies from the overall manufacturing processes. The thesis will describe reasons for the scarcity of CFM in United States industries. The methodology applied was a detailed six page questionnaire sent to over thirty-five industries in United States, using CFM as a part in their manufacturing operations. The research focused on difficulties experienced during preparation and implementation of CFM. The theoretical research and the questionnaire analysis revealed that CFM is indeed partially culture-based, difficult to understand, not easy to accept and hard enough to implement. Although the research was taken from a stratified sample of already known CFM implementors, full scale implementation fell very short. In fact, most industries in United States seemed to be engaged in preparing for CFM. Hopefully, the information presented will help the United States industries to formulate plans and strategies to implement further actions that will lead to more efficiency and effectiveness in their manufacturing operations

    Lead-time reduction and improving the operating efficiency

    Get PDF
    For a successful manufacturing company to consistently realise success invariably requires the organisation to find new methods of achieving competitive advantages. Today time is on the cutting edge and represents one of the most determinants of leading companies. This project is a part of an ongoing effort to sustain a competitive position and thus maintain company prosperity especially with new competitors entering the European Community (EU). Additionally reduced lead-time at Hephaestus S.A., will lead to reduced operating costs, which will enhance the profitability of this company. The aim of this project is to develop a generic tool based on the knowledge gained from a literature research into formal methodologies for reducing leadtime. This generic tool was tested by its application to the activities of Hephaestus S.A., and investigated how problems areas can be addressed. Finally recommendations have been made to Heaphaestus S.A. for reducing its lead-time and improving its operating efficiencyMS

    Definition of the Guide for Implementation Lean

    Get PDF

    A framework for flexible integration in robotics and its applications for calibration and error compensation

    Get PDF
    Robotics has been considered as a viable automation solution for the aerospace industry to address manufacturing cost. Many of the existing robot systems augmented with guidance from a large volume metrology system have proved to meet the high dimensional accuracy requirements in aero-structure assembly. However, they have been mainly deployed as costly and dedicated systems, which might not be ideal for aerospace manufacturing having low production rate and long cycle time. The work described in this thesis is to provide technical solutions to improve the flexibility and cost-efficiency of such metrology-integrated robot systems. To address the flexibility, a software framework that supports reconfigurable system integration is developed. The framework provides a design methodology to compose distributed software components which can be integrated dynamically at runtime. This provides the potential for the automation devices (robots, metrology, actuators etc.) controlled by these software components to be assembled on demand for various assembly applications. To reduce the cost of deployment, this thesis proposes a two-stage error compensation scheme for industrial robots that requires only intermittent metrology input, thus allowing for one expensive metrology system to be used by a number of robots. Robot calibration is employed in the first stage to reduce the majority of robot inaccuracy then the metrology will correct the residual errors. In this work, a new calibration model for serial robots having a parallelogram linkage is developed that takes into account both geometric errors and joint deflections induced by link masses and weight of the end-effectors. Experiments are conducted to evaluate the two pieces of work presented above. The proposed framework is adopted to create a distributed control system that implements calibration and error compensation for a large industrial robot having a parallelogram linkage. The control system is formed by hot-plugging the control applications of the robot and metrology used together. Experimental results show that the developed error model was able to improve the 3 positional accuracy of the loaded robot from several millimetres to less than one millimetre and reduce half of the time previously required to correct the errors by using only the metrology. The experiments also demonstrate the capability of sharing one metrology system to more than one robot

    Transformation challenges following the efficient lean practice implementation in the programme organized, project driven change process

    Get PDF

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments

    Get PDF
    This book presents the collection of fifty papers which were presented in the Second International Conference on BUSINESS SUSTAINABILITY 2011 - Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments , held in Póvoa de Varzim, Portugal, from 22ndto 24thof June, 2011.The main motive of the meeting was growing awareness of the importance of the sustainability issue. This importance had emerged from the growing uncertainty of the market behaviour that leads to the characterization of the market, i.e. environment, as turbulent. Actually, the characterization of the environment as uncertain and turbulent reflects the fact that the traditional technocratic and/or socio-technical approaches cannot effectively and efficiently lead with the present situation. In other words, the rise of the sustainability issue means the quest for new instruments to deal with uncertainty and/or turbulence. The sustainability issue has a complex nature and solutions are sought in a wide range of domains and instruments to achieve and manage it. The domains range from environmental sustainability (referring to natural environment) through organisational and business sustainability towards social sustainability. Concerning the instruments for sustainability, they range from traditional engineering and management methodologies towards “soft” instruments such as knowledge, learning, and creativity. The papers in this book address virtually whole sustainability problems space in a greater or lesser extent. However, although the uncertainty and/or turbulence, or in other words the dynamic properties, come from coupling of management, technology, learning, individuals, organisations and society, meaning that everything is at the same time effect and cause, we wanted to put the emphasis on business with the intention to address primarily companies and their businesses. Due to this reason, the main title of the book is “Business Sustainability 2.0” but with the approach of coupling Management, Technology and Learning for individuals, organisations and society in Turbulent Environments. Also, the notation“2.0” is to promote the publication as a step further from our previous publication – “Business Sustainability I” – as would be for a new version of software. Concerning the Second International Conference on BUSINESS SUSTAINABILITY, its particularity was that it had served primarily as a learning environment in which the papers published in this book were the ground for further individual and collective growth in understanding and perception of sustainability and capacity for building new instruments for business sustainability. In that respect, the methodology of the conference work was basically dialogical, meaning promoting dialog on the papers, but also including formal paper presentations. In this way, the conference presented a rich space for satisfying different authors’ and participants’ needs. Additionally, promoting the widest and global learning environment and participation, in accordance with the Conference's assumed mission to promote Proactive Generative Collaborative Learning, the Conference Organisation shares/puts open to the community the papers presented in this book, as well as the papers presented on the previous Conference(s). These papers can be accessed from the conference webpage (http://labve.dps.uminho.pt/bs11). In these terms, this book could also be understood as a complementary instrument to the Conference authors’ and participants’, but also to the wider readerships’ interested in the sustainability issues. The book brought together 107 authors from 11 countries, namely from Australia, Belgium, Brazil, Canada, France, Germany, Italy, Portugal, Serbia, Switzerland, and United States of America. The authors “ranged” from senior and renowned scientists to young researchers providing a rich and learning environment. At the end, the editors hope, and would like, that this book to be useful, meeting the expectation of the authors and wider readership and serving for enhancing the individual and collective learning, and to incentive further scientific development and creation of new papers. Also, the editors would use this opportunity to announce the intention to continue with new editions of the conference and subsequent editions of accompanying books on the subject of BUSINESS SUSTAINABILITY, the third of which is planned for year 2013.info:eu-repo/semantics/publishedVersio

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development
    • 

    corecore