752 research outputs found

    On Building Maps of Web Pages with a Cellular Automaton

    Get PDF
    Abstract. We present in this paper a clustering algorithm which is based on a cellular automaton and which aims at displaying a map of web pages. We describe the main principles of methods that build such maps, and the main principles of cellular automata. We show how these principles can be applied to the problem of web pages clustering: the cells, which are organized in a 2D grid, can be either empty or may contain a page. The local transition function of cells favors the creation of groups of similar states (web pages) in neighbouring cells. We then present the visual results obtained with our method on standard data as well as on sets of documents. These documents are thus organized into a visual map which eases the browsing of these pages

    Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov–Zhabotinsky reaction

    Get PDF
    Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn

    Cellular automata with complicated dynamics

    Get PDF
    A subshift is a collection of bi-infinite sequences (configurations) of symbols where some finite patterns of symbols are forbidden to occur. A cellular automaton is a transformation that changes each configuration of a subshift into another one by using a finite look-up table that tells how any symbol occurring at any possible context is to be changed. A cellular automaton can be applied repeatedly on the configurations of the subshift, thus making it a dynamical system. This thesis focuses on cellular automata with complex dynamical behavior, with some different definitions of the word “complex”. First we consider a naturally occurring class of cellular automata that we call multiplication automata and we present a case study with the point of view of symbolic, topological and measurable dynamics. We also present an application of these automata to a generalized version of Mahler’s problem. For different notions of complex behavior one may also ask whether a given subshift or class of subshifts has a cellular automaton that presents this behavior. We show that in the class of full shifts the Lyapunov exponents of a given reversible cellular automaton are uncomputable. This means that in the dynamics of reversible cellular automata the long term maximal propagation speed of a perturbation made in an initial configuration cannot be determined in general from short term observations. In the last part we construct, on all mixing sofic shifts, diffusive glider cellular automata that can decompose any finite configuration into two distinct components that shift into opposing direction under repeated action of the automaton. This implies that every mixing sofic shift has a reversible cellular automaton all of whose directions are sensitive in the sense of the definition of Sablik. We contrast this by presenting a family of synchronizing subshifts on which all reversible cellular automata always have a nonsensitive direction

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    Conservative Reversible Elementary Cellular Automata and their Quantum Computations

    Get PDF
    • …
    corecore