96,573 research outputs found

    On Bounded Weight Codes

    Full text link
    The maximum size of a binary code is studied as a function of its length N, minimum distance D, and minimum codeword weight W. This function B(N,D,W) is first characterized in terms of its exponential growth rate in the limit as N tends to infinity for fixed d=D/N and w=W/N. The exponential growth rate of B(N,D,W) is shown to be equal to the exponential growth rate of A(N,D) for w <= 1/2, and equal to the exponential growth rate of A(N,D,W) for 1/2< w <= 1. Second, analytic and numerical upper bounds on B(N,D,W) are derived using the semidefinite programming (SDP) method. These bounds yield a non-asymptotic improvement of the second Johnson bound and are tight for certain values of the parameters

    Estimates on the Size of Symbol Weight Codes

    Full text link
    The study of codes for powerlines communication has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this work we study a type of code called the bounded symbol weight codes which was first introduced by Versfeld et al. in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.Comment: 14 pages, 4 figure

    Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels

    Full text link
    We introduce a new family of concatenated codes with an outer low-density parity-check (LDPC) code and an inner low-density generator matrix (LDGM) code, and prove that these codes can achieve capacity under any memoryless binary-input output-symmetric (MBIOS) channel using maximum-likelihood (ML) decoding with bounded graphical complexity, i.e., the number of edges per information bit in their graphical representation is bounded. In particular, we also show that these codes can achieve capacity on the binary erasure channel (BEC) under belief propagation (BP) decoding with bounded decoding complexity per information bit per iteration for all erasure probabilities in (0, 1). By deriving and analyzing the average weight distribution (AWD) and the corresponding asymptotic growth rate of these codes with a rate-1 inner LDGM code, we also show that these codes achieve the Gilbert-Varshamov bound with asymptotically high probability. This result can be attributed to the presence of the inner rate-1 LDGM code, which is demonstrated to help eliminate high weight codewords in the LDPC code while maintaining a vanishingly small amount of low weight codewords.Comment: 17 pages, 2 figures. This paper is to be presented in the 43rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, Sept. 28-30, 200

    The Weight Distributions of a Class of Cyclic Codes with Three Nonzeros over F3

    Full text link
    Cyclic codes have efficient encoding and decoding algorithms. The decoding error probability and the undetected error probability are usually bounded by or given from the weight distributions of the codes. Most researches are about the determination of the weight distributions of cyclic codes with few nonzeros, by using quadratic form and exponential sum but limited to low moments. In this paper, we focus on the application of higher moments of the exponential sum to determine the weight distributions of a class of ternary cyclic codes with three nonzeros, combining with not only quadratic form but also MacWilliams' identities. Another application of this paper is to emphasize the computer algebra system Magma for the investigation of the higher moments. In the end, the result is verified by one example using Matlab.Comment: 10 pages, 3 table

    Tradeoffs for reliable quantum information storage in surface codes and color codes

    Get PDF
    The family of hyperbolic surface codes is one of the rare families of quantum LDPC codes with non-zero rate and unbounded minimum distance. First, we introduce a family of hyperbolic color codes. This produces a new family of quantum LDPC codes with non-zero rate and with minimum distance logarithmic in the blocklength. Second, we study the tradeoff between the length n, the number of encoded qubits k and the distance d of surface codes and color codes. We prove that kd^2 is upper bounded by C(log k)^2n, where C is a constant that depends only on the row weight of the parity-check matrix. Our results prove that the best asymptotic minimum distance of LDPC surface codes and color codes with non-zero rate is logarithmic in the length.Comment: 10 page

    Maximum Weight Spectrum Codes

    Full text link
    In the recent work \cite{shi18}, a combinatorial problem concerning linear codes over a finite field \F_q was introduced. In that work the authors studied the weight set of an [n,k]q[n,k]_q linear code, that is the set of non-zero distinct Hamming weights, showing that its cardinality is upper bounded by qk−1q−1\frac{q^k-1}{q-1}. They showed that this bound was sharp in the case q=2 q=2 , and in the case k=2 k=2 . They conjectured that the bound is sharp for every prime power q q and every positive integer k k . In this work quickly establish the truth of this conjecture. We provide two proofs, each employing different construction techniques. The first relies on the geometric view of linear codes as systems of projective points. The second approach is purely algebraic. We establish some lower bounds on the length of codes that satisfy the conjecture, and the length of the new codes constructed here are discussed.Comment: 19 page
    • …
    corecore