4,618 research outputs found

    Brain-mediated Transfer Learning of Convolutional Neural Networks

    Full text link
    The human brain can effectively learn a new task from a small number of samples, which indicate that the brain can transfer its prior knowledge to solve tasks in different domains. This function is analogous to transfer learning (TL) in the field of machine learning. TL uses a well-trained feature space in a specific task domain to improve performance in new tasks with insufficient training data. TL with rich feature representations, such as features of convolutional neural networks (CNNs), shows high generalization ability across different task domains. However, such TL is still insufficient in making machine learning attain generalization ability comparable to that of the human brain. To examine if the internal representation of the brain could be used to achieve more efficient TL, we introduce a method for TL mediated by human brains. Our method transforms feature representations of audiovisual inputs in CNNs into those in activation patterns of individual brains via their association learned ahead using measured brain responses. Then, to estimate labels reflecting human cognition and behavior induced by the audiovisual inputs, the transformed representations are used for TL. We demonstrate that our brain-mediated TL (BTL) shows higher performance in the label estimation than the standard TL. In addition, we illustrate that the estimations mediated by different brains vary from brain to brain, and the variability reflects the individual variability in perception. Thus, our BTL provides a framework to improve the generalization ability of machine-learning feature representations and enable machine learning to estimate human-like cognition and behavior, including individual variability

    A fast algorithm for detecting gene-gene interactions in genome-wide association studies

    Full text link
    With the recent advent of high-throughput genotyping techniques, genetic data for genome-wide association studies (GWAS) have become increasingly available, which entails the development of efficient and effective statistical approaches. Although many such approaches have been developed and used to identify single-nucleotide polymorphisms (SNPs) that are associated with complex traits or diseases, few are able to detect gene-gene interactions among different SNPs. Genetic interactions, also known as epistasis, have been recognized to play a pivotal role in contributing to the genetic variation of phenotypic traits. However, because of an extremely large number of SNP-SNP combinations in GWAS, the model dimensionality can quickly become so overwhelming that no prevailing variable selection methods are capable of handling this problem. In this paper, we present a statistical framework for characterizing main genetic effects and epistatic interactions in a GWAS study. Specifically, we first propose a two-stage sure independence screening (TS-SIS) procedure and generate a pool of candidate SNPs and interactions, which serve as predictors to explain and predict the phenotypes of a complex trait. We also propose a rates adjusted thresholding estimation (RATE) approach to determine the size of the reduced model selected by an independence screening. Regularization regression methods, such as LASSO or SCAD, are then applied to further identify important genetic effects. Simulation studies show that the TS-SIS procedure is computationally efficient and has an outstanding finite sample performance in selecting potential SNPs as well as gene-gene interactions. We apply the proposed framework to analyze an ultrahigh-dimensional GWAS data set from the Framingham Heart Study, and select 23 active SNPs and 24 active epistatic interactions for the body mass index variation. It shows the capability of our procedure to resolve the complexity of genetic control.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS771 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Confidence intervals of prediction accuracy measures for multivariable prediction models based on the bootstrap-based optimism correction methods

    Full text link
    In assessing prediction accuracy of multivariable prediction models, optimism corrections are essential for preventing biased results. However, in most published papers of clinical prediction models, the point estimates of the prediction accuracy measures are corrected by adequate bootstrap-based correction methods, but their confidence intervals are not corrected, e.g., the DeLong's confidence interval is usually used for assessing the C-statistic. These naive methods do not adjust for the optimism bias and do not account for statistical variability in the estimation of parameters in the prediction models. Therefore, their coverage probabilities of the true value of the prediction accuracy measure can be seriously below the nominal level (e.g., 95%). In this article, we provide two generic bootstrap methods, namely (1) location-shifted bootstrap confidence intervals and (2) two-stage bootstrap confidence intervals, that can be generally applied to the bootstrap-based optimism correction methods, i.e., the Harrell's bias correction, 0.632, and 0.632+ methods. In addition, they can be widely applied to various methods for prediction model development involving modern shrinkage methods such as the ridge and lasso regressions. Through numerical evaluations by simulations, the proposed confidence intervals showed favourable coverage performances. Besides, the current standard practices based on the optimism-uncorrected methods showed serious undercoverage properties. To avoid erroneous results, the optimism-uncorrected confidence intervals should not be used in practice, and the adjusted methods are recommended instead. We also developed the R package predboot for implementing these methods (https://github.com/nomahi/predboot). The effectiveness of the proposed methods are illustrated via applications to the GUSTO-I clinical trial

    Futility Analysis in the Cross-Validation of Machine Learning Models

    Full text link
    Many machine learning models have important structural tuning parameters that cannot be directly estimated from the data. The common tactic for setting these parameters is to use resampling methods, such as cross--validation or the bootstrap, to evaluate a candidate set of values and choose the best based on some pre--defined criterion. Unfortunately, this process can be time consuming. However, the model tuning process can be streamlined by adaptively resampling candidate values so that settings that are clearly sub-optimal can be discarded. The notion of futility analysis is introduced in this context. An example is shown that illustrates how adaptive resampling can be used to reduce training time. Simulation studies are used to understand how the potential speed--up is affected by parallel processing techniques.Comment: 22 pages, 5 figure

    Processor design space exploration and performance prediction

    Get PDF
    The use of simulation is well established in processor design research to evaluate architectural design trade-offs. More importantly, Cycle by Cycle accurate simulation is widely used to evaluate the new designs in processor research because of its accurate and detailed processor performance measurement. However, only configuration in a subspace can be simulated in practice due to its long simulation time and limited resources, leading to suboptimal conclusions that might not be applied to the larger design space. In this thesis, we propose a performance prediction approach which employs a state-of-the-art technique from experimental design, machine learning and data mining. Our model can be trained initially by using Cycle by Cycle accurate simulation results, and then it can be implemented to predict the processor performance of the entire design space. According to our experiments, our model predicts the performance of a single-core processor with median percentage error ranging from 0.32% to 3.01% for about 15 million design spaces by using only 5000 initial independently sampled design points as a training set. In CMP the median percentage error ranges from 0.50% to 1.47% for about 9.7 million design spaces by using only 5000 independently sampled CMP design points as a training set. Apart from this, the model also provides quantitative interpretation tools such as variable importance and partial dependence of the design parameters
    • …
    corecore